PROSTATUS: Diagnostika raka prostate: Difference between revisions

From Wiki FKKT
Jump to navigationJump to search
No edit summary
No edit summary
Line 7: Line 7:
PROSTATUS je študentski projekt skupine iz Univerze južne Danske, s katerim so sodelovali na iGEM-u 2020 v kategoriji podiplomskih študentov. V projektu so razvili neinvazivno metodo, pri kateri zaznavamo tri RNA biomarkerje v urinu in dva SNP-ja, ki povečata verjetnost razvoja raka prostate, v DNA v slini. Test deluje na podlagi sistema CRISPR-Cas13a v primeru zaznavanja RNA biomarkerjev in sistema CRISPR-Cas12a v primeru zaznavanja SNP-jev.  
PROSTATUS je študentski projekt skupine iz Univerze južne Danske, s katerim so sodelovali na iGEM-u 2020 v kategoriji podiplomskih študentov. V projektu so razvili neinvazivno metodo, pri kateri zaznavamo tri RNA biomarkerje v urinu in dva SNP-ja, ki povečata verjetnost razvoja raka prostate, v DNA v slini. Test deluje na podlagi sistema CRISPR-Cas13a v primeru zaznavanja RNA biomarkerjev in sistema CRISPR-Cas12a v primeru zaznavanja SNP-jev.  


==NAČRTOVANJE PROJEKTA==
==OPIS PROJEKTA==
Skupina je v projektu uporabila dve metodi, ki temeljita na delovanju proteinov družine Cas.  
Skupina je v projektu uporabila dve metodi, ki temeljita na delovanju proteinov družine Cas.  
===SHERLOCK===
===SHERLOCK===
Line 13: Line 13:
===DETECTR===
===DETECTR===
DETECTR (The DNA Edonuclease Targeted CRISPR Trans Reporter system) je metoda, ki uporablja Cas12a in zaznava tarčno ssDNA v vzorcu, ob prepoznavi tarče pa pridobi nespecifično endonukleazno aktivnost in cepi reportersko ssDNA.
DETECTR (The DNA Edonuclease Targeted CRISPR Trans Reporter system) je metoda, ki uporablja Cas12a in zaznava tarčno ssDNA v vzorcu, ob prepoznavi tarče pa pridobi nespecifično endonukleazno aktivnost in cepi reportersko ssDNA.
===Inženiring===
====Kloniranje====
Za implementacijo teh dveh metod so morali najprej izraziti dva Cas encima ter pridobiti različne sgRNA, ki se vežejo v encima.
Encime so izražali v E. coli. Uporabili so gena cas13a iz bakterije Leptotrichia wadei in cas12a iz Acidaminococcus sp. Z orodjem podjetja IDT so optimizirali rabo kodonov ter nato v konstrukt dodali vse potrebne komponente za izražanje proteinov (IPTG inducibilni promotor, RBS, terminator ter oznaki SUMO in His na N-koncu) ter naročili sintetični gen, ki so mu nato dodali še restrikcijska mesta za EcoRI in SpeI. 
Gen cas12a, vstavljen v plazmid, so pridobili od raziskovalne skupine iz Univerze južne Danske. S pomnoževanjem s PCR so genu dodali promotorsko regijo sintetičnega gena cas13a. Oba konstrukta so nato klonirali v vektor pSB1C3 in transformirali kompetentne celice E. coli seva ER2256.
====Načrtovanje sgRNA====
Nato so dizajnirali sgRNA, ki se veže v Cas proteina in je ključna za prepoznavanje tarče. Za aktivacijo Cas12a je v oddaljenosti največ 21 bp od tarče potreben PAM motiv (TTTV). Poleg tega je za specifično aktivacijo Cas12a pomembno 100 % ujemanje v začetnem delu t. i. prilegajoče regije sgRNA (ang. spacer sequence) medtem ko v bolj oddaljenem območju prilegajoče regije 100 % ujemanje za aktivacijo ni potrebno. Če želimo specifično prepoznati SNP, je torej pomembno, da se ta nahaja v začetni regiji tarče, sicer bi dobili nespecifično aktivacijo in signal, ki ne bi bil odvisen od SNP-ja. Optimalna dolžina prilegajoče regije naj bi bila 21 – 24 nukleotidov. Vse te omejitve je skupina upoštevala pri dizajnu sgRNA za Cas12a. Oblikovali so štiri sgRNA, ki se vežejo na Cas12a in prepoznajo posamezne možne alele (prevladujoč alel in alel, ki poviša možnost za razvoj raka prostate).
Pri oblikovanju sgRNA za Cas13a so upoštevali optimalno dolžino prilegajoče regije 28-31 nukleotidov, prav tako pa pri sgRNA encima Cas13a velja pravilo o 100 % prileganju začetnega dela prilegajoče regije. Cas13a sicer za prepoznavo tarče ne potrebuje PAM motiva. Skupina je oblikovala tri sgRNA za Cas13a, ki se vežejo na RNA biomarkerje v urinu.
====Pomnoževanje z metodo RPA====
Ker obstaja verjetnost, da ta sistem ne bi zaznal zelo nizkih koncentracij RNA biomarkerjev v vzorcu, bi pred detekcijo RNA biomarkerje še namnožili z uporabo metode pomnoževanja z rekombinazo in polimerazo (ang. recombinase polymerase amplification – RPA). Gre za proces, alternativen PCR, ki poteka izotermalno in je zato njegova izvedba precej bolj enostavna. Za pomnožitev RNA bi potrebovali štiri encime, in sicer rekombinazo, ssDNA vezavne proteine (SSB) reverzno  transkriptazo in DNA polimerazo. Da bi pridobili še pomnoženo RNA in ne le cDNA, bi uporabili še T7 polimerazo.
V reakciji reverzna transkriptaza najprej prepiše ssRNA v cDNA. V RNA/DNA hibrid rekombinaza vstavi začetne oligonukleotide, ki so komplementarni RNA tarči. Na smerne začetne oligonukleotide bi dodali še T7 promotor. SSB stabilizirajo odrinjeno ssDNA na mestu vezave oligonukleotida, reverzna transkriptaza pa nato spet prepiše RNA verigo v cDNA. Iz novonastale cDNA z dodanim T7 promotorjem nato nastane RNA transkript, ki je na koncu reakcije prisoten v visoki koncentraciji in ga zlahka zaznamo v vzorcu. V opisu projekta ne omenjajo DNA polimeraze, a vendar bi bila ta potrebna za sintezo druge verige cDNA. Lahko bi uporabili tudi encim, ki lahko deluje kot reverzna transkriptaza in DNA polimeraza.
Podobno reakcijo bi lahko zasnovali tudi za pomnoževanje DNA fragmentov, ki vsebujejo SNP-je, le da bi v tem primeru potrebovali le DNA polimerazo, ne pa tudi reverzne transkriptaze.
====Inhibicija aktivnosti RNaz====
Ker pri zaznavanju RNA uporabljamo RNaze, ki se aktivirajo ob specifičnem signalu, bi ostale RNaze v urinu lahko motile specifično cepitev reporterja. Zato je ključna inaktivacija RNaz v vzorcu. V projektu bi uporabili metodo cepitve RNaz s proteinazo K. Po obdelavi vzorca s proteinazo K bi slednjo inaktivirali s fenilmetilsulfonil fluoridom (PMSF), da ne bi razgradila encimov Cas.
====Detekcija cepitve reporterja====
Za detekcijo cepitve reporterja s Cas12a in Cas13a bi v projektu uporabili hitri test z lateralnim tokom (ang. lateral flow strip). Ta metoda za vizualizacijo rezultatov uporablja anti-FAM-protitelesa s pripetimi zlatimi nanodelci v kombinaciji s posebnim reporterjem. Reporter prek ssRNA ali ssDNA verige povezuje biotin in fluorescein amidit (FAM). Cepitev reporterja se vizualizira na traku, na katerem sta prisotni dve liniji – testna in kontrolna.  Če pride do cepitve verige reporterja, se na  FAM na cepljenem reporterju lahko veže anti-FAM-protitelo z zlatimi nanodelci na način, ki omogoča vezavo na sekundarna protitelesa, imobilizirana na testni liniji na traku za detekcijo. V primeru, da se reporter ne cepi, pa se protitelesa vežejo na FAM na način, ki ne omogoča vezave na sekundarna protitelesa in se zato reporter prek biotina veže na kontrolno linijo na traku za detekcijo.

Revision as of 20:14, 17 May 2021

PROSTATUS je iGEM projekt iz leta 2020, ki je osvojil nominacijo v kategoriji Diagnostika med podiplomskimi študenti. Pripravili so ga študenti Univerze južne Danske. Spletna stran projekta: [1]

UVOD

Rak prostate je eden najpogostejših rakov, ki se razvije pri enem izmed osmih moških. Število diagnosticiranih primerov se povečuje, k čemur verjetno pripomore povišan screening koncentracije PSA (prostate specific antigen) v krvi med moškimi. Ta test pa je precej nezanesljiv, z 31 % verjetnostjo lažnega pozitivnega rezultata in 42 % verjetnostjo lažnega negativnega rezultata. PSA nivo v krvi se lahko poviša iz številnih drugih razlogov (vnetje urinarnega trakta, ejakulacija, zdravila…). Poleg tega preverjanju krvne slike sledi še neprijeten in invaziven fizičen pregled. Vsekakor ima trenutni postopek screeninga raka prostate veliko potenciala za izboljšave. PROSTATUS je študentski projekt skupine iz Univerze južne Danske, s katerim so sodelovali na iGEM-u 2020 v kategoriji podiplomskih študentov. V projektu so razvili neinvazivno metodo, pri kateri zaznavamo tri RNA biomarkerje v urinu in dva SNP-ja, ki povečata verjetnost razvoja raka prostate, v DNA v slini. Test deluje na podlagi sistema CRISPR-Cas13a v primeru zaznavanja RNA biomarkerjev in sistema CRISPR-Cas12a v primeru zaznavanja SNP-jev.

OPIS PROJEKTA

Skupina je v projektu uporabila dve metodi, ki temeljita na delovanju proteinov družine Cas.

SHERLOCK

SHERLOCK (Specific High-sensitivity Enzymatic Reporter unLOCKinkg) je metoda, ki s pomočjo encima Cas13a zaznava ssRNA v vzorcu. V Cas13a je vezana sgRNA (single guide RNA), ki zazna komplementarno tarčo v vzorcu. Ko pride do hibridizacije s tarčo, se Cas13a aktivira in cepi tudi netarčno RNA v vzorcu. Na ta način lahko pride do cepitve reporterske RNA.

DETECTR

DETECTR (The DNA Edonuclease Targeted CRISPR Trans Reporter system) je metoda, ki uporablja Cas12a in zaznava tarčno ssDNA v vzorcu, ob prepoznavi tarče pa pridobi nespecifično endonukleazno aktivnost in cepi reportersko ssDNA.

Inženiring

Kloniranje

Za implementacijo teh dveh metod so morali najprej izraziti dva Cas encima ter pridobiti različne sgRNA, ki se vežejo v encima. Encime so izražali v E. coli. Uporabili so gena cas13a iz bakterije Leptotrichia wadei in cas12a iz Acidaminococcus sp. Z orodjem podjetja IDT so optimizirali rabo kodonov ter nato v konstrukt dodali vse potrebne komponente za izražanje proteinov (IPTG inducibilni promotor, RBS, terminator ter oznaki SUMO in His na N-koncu) ter naročili sintetični gen, ki so mu nato dodali še restrikcijska mesta za EcoRI in SpeI. Gen cas12a, vstavljen v plazmid, so pridobili od raziskovalne skupine iz Univerze južne Danske. S pomnoževanjem s PCR so genu dodali promotorsko regijo sintetičnega gena cas13a. Oba konstrukta so nato klonirali v vektor pSB1C3 in transformirali kompetentne celice E. coli seva ER2256.

Načrtovanje sgRNA

Nato so dizajnirali sgRNA, ki se veže v Cas proteina in je ključna za prepoznavanje tarče. Za aktivacijo Cas12a je v oddaljenosti največ 21 bp od tarče potreben PAM motiv (TTTV). Poleg tega je za specifično aktivacijo Cas12a pomembno 100 % ujemanje v začetnem delu t. i. prilegajoče regije sgRNA (ang. spacer sequence) medtem ko v bolj oddaljenem območju prilegajoče regije 100 % ujemanje za aktivacijo ni potrebno. Če želimo specifično prepoznati SNP, je torej pomembno, da se ta nahaja v začetni regiji tarče, sicer bi dobili nespecifično aktivacijo in signal, ki ne bi bil odvisen od SNP-ja. Optimalna dolžina prilegajoče regije naj bi bila 21 – 24 nukleotidov. Vse te omejitve je skupina upoštevala pri dizajnu sgRNA za Cas12a. Oblikovali so štiri sgRNA, ki se vežejo na Cas12a in prepoznajo posamezne možne alele (prevladujoč alel in alel, ki poviša možnost za razvoj raka prostate). Pri oblikovanju sgRNA za Cas13a so upoštevali optimalno dolžino prilegajoče regije 28-31 nukleotidov, prav tako pa pri sgRNA encima Cas13a velja pravilo o 100 % prileganju začetnega dela prilegajoče regije. Cas13a sicer za prepoznavo tarče ne potrebuje PAM motiva. Skupina je oblikovala tri sgRNA za Cas13a, ki se vežejo na RNA biomarkerje v urinu.

Pomnoževanje z metodo RPA

Ker obstaja verjetnost, da ta sistem ne bi zaznal zelo nizkih koncentracij RNA biomarkerjev v vzorcu, bi pred detekcijo RNA biomarkerje še namnožili z uporabo metode pomnoževanja z rekombinazo in polimerazo (ang. recombinase polymerase amplification – RPA). Gre za proces, alternativen PCR, ki poteka izotermalno in je zato njegova izvedba precej bolj enostavna. Za pomnožitev RNA bi potrebovali štiri encime, in sicer rekombinazo, ssDNA vezavne proteine (SSB) reverzno transkriptazo in DNA polimerazo. Da bi pridobili še pomnoženo RNA in ne le cDNA, bi uporabili še T7 polimerazo. V reakciji reverzna transkriptaza najprej prepiše ssRNA v cDNA. V RNA/DNA hibrid rekombinaza vstavi začetne oligonukleotide, ki so komplementarni RNA tarči. Na smerne začetne oligonukleotide bi dodali še T7 promotor. SSB stabilizirajo odrinjeno ssDNA na mestu vezave oligonukleotida, reverzna transkriptaza pa nato spet prepiše RNA verigo v cDNA. Iz novonastale cDNA z dodanim T7 promotorjem nato nastane RNA transkript, ki je na koncu reakcije prisoten v visoki koncentraciji in ga zlahka zaznamo v vzorcu. V opisu projekta ne omenjajo DNA polimeraze, a vendar bi bila ta potrebna za sintezo druge verige cDNA. Lahko bi uporabili tudi encim, ki lahko deluje kot reverzna transkriptaza in DNA polimeraza. Podobno reakcijo bi lahko zasnovali tudi za pomnoževanje DNA fragmentov, ki vsebujejo SNP-je, le da bi v tem primeru potrebovali le DNA polimerazo, ne pa tudi reverzne transkriptaze.

Inhibicija aktivnosti RNaz

Ker pri zaznavanju RNA uporabljamo RNaze, ki se aktivirajo ob specifičnem signalu, bi ostale RNaze v urinu lahko motile specifično cepitev reporterja. Zato je ključna inaktivacija RNaz v vzorcu. V projektu bi uporabili metodo cepitve RNaz s proteinazo K. Po obdelavi vzorca s proteinazo K bi slednjo inaktivirali s fenilmetilsulfonil fluoridom (PMSF), da ne bi razgradila encimov Cas.

Detekcija cepitve reporterja

Za detekcijo cepitve reporterja s Cas12a in Cas13a bi v projektu uporabili hitri test z lateralnim tokom (ang. lateral flow strip). Ta metoda za vizualizacijo rezultatov uporablja anti-FAM-protitelesa s pripetimi zlatimi nanodelci v kombinaciji s posebnim reporterjem. Reporter prek ssRNA ali ssDNA verige povezuje biotin in fluorescein amidit (FAM). Cepitev reporterja se vizualizira na traku, na katerem sta prisotni dve liniji – testna in kontrolna. Če pride do cepitve verige reporterja, se na FAM na cepljenem reporterju lahko veže anti-FAM-protitelo z zlatimi nanodelci na način, ki omogoča vezavo na sekundarna protitelesa, imobilizirana na testni liniji na traku za detekcijo. V primeru, da se reporter ne cepi, pa se protitelesa vežejo na FAM na način, ki ne omogoča vezave na sekundarna protitelesa in se zato reporter prek biotina veže na kontrolno linijo na traku za detekcijo.