Sestavljanje fagnih delcev in vloga portalnega proteina: Difference between revisions

From Wiki FKKT
Jump to navigationJump to search
(Je)
Line 4: Line 4:
==Zgradba portalnega proteina==
==Zgradba portalnega proteina==


Strukturno so kompleksi portalnih proteinov dodekamerni obroči (12 podenot) in so del ikozaederične kapside. Vsaka kapsida ima na enem izmed svojih dvanajstih oglišč, ki je stičišče petih ploskev, prisoten portalni dodekamerni obroč. Gre za središče, ki omogoča pritrditev repa in proteinov, ki omogočijo zaprtje virusnega delca.  
Strukturno so kompleksi portalnih proteinov dodekamerni obroči (12 podenot) in so del ikozaederične kapside. Vsaka kapsida ima na enem izmed svojih dvanajstih oglišč, ki je stičišče petih ploskev, prisoten portalni dodekamerni obroč. Je srdišče za pritrditev repa in proteinov, ki omogočijo zaprtje virusnega delca.  
Čeprav se monomeri portalnih proteinov različnih virusov precej razlikujejo po velikosti (od 0,4 do 1 Mda), si vsi delijo podobno zvitje kljub zelo nizki podobnosti primarnega aminokislinskega zaporedja. Ta je običajno zgolj okrog 12%. Tako funkcija portalnih proteinov temelji predvsem na njihovem zvitju in strukturi.  
Čeprav se monomeri portalnih proteinov različnih virusov precej razlikujejo po velikosti (od 0,4 do 1 Mda), si vsi delijo podobno zvitje kljub zelo nizki podobnosti primarnega aminokislinskega zaporedja. Ta je običajno zgolj okrog 12%. Tako funkcija portalnih proteinov temelji predvsem na njihovem zvitju in strukturi.  
Zanimivo je opažanje, da in vitro obstajajo različne oligomerne oblike (11-meri, 12-meri in 13-meri). Kar nakazuje na to, da so monomeri portalnih proteinov zgrajeni, tako da se lahko prilagodijo znatnim strukturnim spremembam. Strukturno, je ta plastičnost lahko pojasnjena s prisotnostjo pozitivno in negativno nabitih zaplat na protomerih portala, ki interagirajo preko elektrostatskih sil, in delujejo kot molekularni magneti. Poseldično je možen nastanek različnih oligomerov.  
Zanimivo je opažanje, da in vitro obstajajo različne oligomerne oblike (11-meri, 12-meri in 13-meri). Kar nakazuje na to, da so monomeri portalnih proteinov zgrajeni, tako da se lahko prilagodijo znatnim strukturnim spremembam. Strukturno, je ta plastičnost lahko pojasnjena s prisotnostjo pozitivno in negativno nabitih zaplat na protomerih portala, ki interagirajo preko elektrostatskih sil, in delujejo kot molekularni magneti. Poseldično je možen nastanek različnih oligomerov.  

Revision as of 22:02, 4 May 2020

Kompleksi portalnih proteinov so posebne strukture, ki so se razvile pri dsDNA bakteriofagih iz reda Caudiovirales. Ti kompleksi, razporejeni v obliki dodekamernih obročev, igrajo posebno vlogo pri uspešnosti virusne okužbe, saj so ključnega pomena pri sestavljanju viriona, pakiranju bakteriofagne DNA in dostavi DNA gostiteljski celici.


Zgradba portalnega proteina

Strukturno so kompleksi portalnih proteinov dodekamerni obroči (12 podenot) in so del ikozaederične kapside. Vsaka kapsida ima na enem izmed svojih dvanajstih oglišč, ki je stičišče petih ploskev, prisoten portalni dodekamerni obroč. Je srdišče za pritrditev repa in proteinov, ki omogočijo zaprtje virusnega delca. Čeprav se monomeri portalnih proteinov različnih virusov precej razlikujejo po velikosti (od 0,4 do 1 Mda), si vsi delijo podobno zvitje kljub zelo nizki podobnosti primarnega aminokislinskega zaporedja. Ta je običajno zgolj okrog 12%. Tako funkcija portalnih proteinov temelji predvsem na njihovem zvitju in strukturi. Zanimivo je opažanje, da in vitro obstajajo različne oligomerne oblike (11-meri, 12-meri in 13-meri). Kar nakazuje na to, da so monomeri portalnih proteinov zgrajeni, tako da se lahko prilagodijo znatnim strukturnim spremembam. Strukturno, je ta plastičnost lahko pojasnjena s prisotnostjo pozitivno in negativno nabitih zaplat na protomerih portala, ki interagirajo preko elektrostatskih sil, in delujejo kot molekularni magneti. Poseldično je možen nastanek različnih oligomerov. Vsak monomer in tudi celoten dodekamer ima vsaj štiri, nekateri pa pet značilnih regij.

Sodček

Portalni obroči imajo lahko dodatno regijo sodčka, ki je pritrjen na krono in se razširja v notranjost kapside. Prisoten je pri bakteriofagih T4 in P22. Pri P22 je prisoten le pri popolnoma dozorelih virusih. Gre za vijačno strukturo. Regija sodčka pri posameznem monomeru portalnega proteina vsebuje eno alfa vijačnico. Pri bakteriofagih P22 je ta dolga kar 125 aminokislin. V tej regiji je najpogostejša aminokislina glutamin (17%), ki je tudi pogost aminokislinski ostanek pri DNA vezavnih proteinih.

Krona

Regija krone je širok konec (če ni prisotne regije sodčka) portalnega proteinskega kompleksa in sega v notranjost virusne kapside. Je sestavljena iz alfa vijačnic. Poleg regije krial gre za najbolj variabilno regijo portalnega proteina. Je fleksibilno povezana z regijo krila.

Krilo

Regija krila mogoča tesno povezavo s kapsido in ogrodnimi proteini. Štrli navzven iz centralne osi. Najdaljša alfa vijačnica v domeni predstavlja hrbetenico krila. Na obrobju pa ima alfa/beta podzvitje. Ploščata površina krila je prevladujoče negativno nabita. To prepreči vezavo DNA na portal. Velikosti domene krila lahko segajo od 33 kDa (HK97-podobni virusi) pa vse do 80 kDa (P22). Krilo je povezano s steblom preko fleksibilne zanke. Gre za neurejen element prisoten pri poznanih kompleksih nekaterih fagov. Zanke vsakega od protomerov prodirajo proti centru portalnega kanala in tako ustvarijo zožitev v obroču. Ta ima ključno vlogo pri preprečevanju uhajanja DNA pri pakiranju.

Steblo

Tako kot pecelj je tudi regija stebla strogo urejena. Tipično ga sestavljata dve alfa vijačnici in zunanje zanke. Steblo proteinskega kompleksa torej sestavljajo alfa vijačnice, ki pa so glede na center kanala zasukane za kot od 30° do 50°, odvisno za kateri virus gre. Mutacije v heliksu stebla imajo velik vpliv na DNA pakiranje. Pri P22 spremenjeni aminokislinski ostanki 105-132 rezultirajo v prekomernem pakiranju. Ravno obratno pa se zgodi pri SPP1, pri katerem mutacije povzročijo ustavitev pakiranja.

Pecelj

Domena peclja je izpostavljena zunanjosti kapside. Vključena je v vezavo terminaze in predstavlja mesto za interakcijo z adapterskimi proteini. Je strogo urejena. Predstavlja začetni del kanala za DNA pakiranje. Računalniške simulacije so pokazale, da je centralno jedro bakteriofaga phi29 trdnejše in manj prožno kot konci peclja. Verjetno je to nujno, da lahko pecelj prenese pritisk, ki ga sproži pakiranje DNA. Pri portalnem kompleksu bakteriofaga T4 pozitivne aminokisline obdajajo dno regije peclja in so najverjetneje vpletene v ujetje DNA ob pričetku translokacije virusnega genoma.

DNA pakirajoči motor bakteriofagov

Da se v kapsidi bakteriofagov na omejenem volumnu razporedi negativno nabita DNA, je potrebno usklajeno delovanje portalnega proteina s terminaznim kompleksom, ki ga sestavljata mala in velika terminazna podenota. Terminazni in portalni proteinski kompleks skupaj tvorita molekulski motor, ki pretvarja kemijsko energijo, ki se sprosti pri hidrolizi ATP, v fizično gibanje molekul, zaradi česar pride do vstavitve DNA v prokapsido. DNA se v prokapsido vstavi s hitrostmi do ∼1,800 bp na sekundo in v korakih po 2 bp/ATP. Preko kanala premera 30 Å, ki ga tvori portalni protein, se v prokapsido translocira linearen genom, kjer se zelo tesno pakira v kompaktno strukturo. DNA pakirajoči motor bakteriofagov je najmočnejši do zdaj poznani molekulski motor in generira ogromne sile (do 60 pN). Tako velike sile so ključne za pakiranje DNA proti ogromnim elektrostatskim odbojnim silam in neugodni entropiji.

Mala terminazna podenota prepozna genomsko DNA, na kompleks male terminaze in DNA se naloži velika terminaza in nato se celoten kompleks naloži na portalni protein. Velika terminaza interagira z regijo pecelj portalnega proteina in oligomerizira, pri čemer tvori pentamerni obroč. Sestavljena je iz endonukleazne C-končne domene, ki je odgovorna za cepitev DNA, ter ATPazne N-končne domene, ki prispeva energijo za pakiranje DNA. Številni bakteriofagi podvojujejo genom po principu kotalečega se kroga in tvorijo dolge konkatemere. Prepoznavanje DNA in njena cepitev pa se med različnimi bakteriofagi razlikuje. Pri nekaterih bakteriofagih, kot so P22, T4 in SPP1, pride do začetne nespecifične cepitve blizu prepoznavnega mesta pac (angl. packaging recognition site). Ko je kapsida polna, se pakiranje genoma konča in pride do nespecifične cepitve DNA. Da ti bakteriofagi zagotovijo, da vsaka kapsida vsebuje celoten genom, je zanje značilna terminalno redundančna DNA. Drug mehanizem, do katerega pride pri bakteriofagih λ, HK97 in P2, pa je cepitev na specifičnih kohezivnih končnih mestih (cos), tako da se celoten genom nahaja med dvema cos cepitvenima mestoma. Bakteriofag φ29 pa ne potrebuje cepitve, saj je njegov genom že končne dolžine. Posebnost bakteriofaga φ29 je tudi, da za pakiranje DNA potrebuje šest molekul pRNA (pakirajoča RNA), ki so dolge 174 nukleotidov, in katerih sekundarna struktura je ključna za pakiranje DNA ter imajo homologno vlogo kot mala terminaza, potrebne pa so tudi za nalaganje ATPaznega dela motorja.

Strukturne spremembe portalnega proteina pri pakiranju genoma

Ko so preučevali strukturne spremembe portalnega proteina bakteriofaga P22 pri pakiranju DNA, so ugotovili, da pakiranje DNA inducira prehod nezrelega asimetričnega portalnega proteina v zrel simetričen kompaktnejši portalni protein, pri čemer pride do povečanja premera osrednjega kanala s 25 Å na 40 Å, medtem ko se celoten premer portalnega proteina zmanjša z 200 Å na 170 Å. Samo prvotna oblika, ki je prisotna v nezrelem bakteriofagu, pa je sposobna pakiranja DNA.

Regija sodček zaradi pakiranja genoma spremeni konformacijo iz nestrukturirane v alfa vijačno in zaznava pritisk v kapsidi. Do največje strukturne spremembe pride na C-končnem delu regije sodček, ki v zreli obliki sega precej bolj v notranjost kapside. Med pakiranjem DNA pride zaradi prevladovanja negativno nabitih aminokislinskih ostankov na zunanji površini regije sodček do odboja med DNA in negativnimi ostanki, zato se ta regija iztegne. Ta strukturna sprememba je najverjetneje ključna za injiciranje genoma ob infekciji.

Strukturna sprememba se zaradi visokega pritiska prenese iz regije sodček na regiji pecelj in krilo, in posledično pride do preureditve simetrije portalnega proteina iz petdelne v šestdelno. Ta preureditev simetrije predstavlja signal za terminacijo pakiranja in vodi v zmanjšanje vezavne afinitete za veliko terminazo, kar upočasni translokacijo DNA in pospeši nukleazno aktivnost velike terminaze. Velika in mala terminaza se ob zaključku pakiranja DNA sprostita z nascentnega bakteriofaga, zato v zrelem bakteriofagu nista prisotni.