TBK2017 Povzetki seminarjev: Difference between revisions
Anja Černe (talk | contribs) |
Maja Kolar (talk | contribs) No edit summary |
||
(100 intermediate revisions by 68 users not shown) | |||
Line 1: | Line 1: | ||
[[TBK2017-seminar|Nazaj na osnovno stran]] | [[TBK2017-seminar|Nazaj na osnovno stran]] | ||
===Ana Scott: | ===Ana Scott: Nukleaza, ki povzroči partanatos oziroma od PARP-1 odvisno celično smrt=== | ||
Partanatos je ena izmed vrst celične smrti, ki nastopi zaradi prevelike aktivnosti poli(ADP-riboza) polimeraze 1 (PARP-1) v jedru. Pogost je v primeru možganske kapi, infarkta in nevrodegenerativnih boleznih, zaradi česar bi boljše poznavanje samega procesa omogočilo razvoj novih načinov zdravljenja teh obolenj. V predhodnih raziskavah so ugotovili, da partanatos nastopi, ko molekule poli-ADP-riboze, ki jih PARP-1 sintetizira, preidejo iz jedra v citosol, kjer aktivirajo premestitev indukcijskega faktorja apoptoze (AIF) iz mitohondrijev v jedro. Temu sledi razrez DNA. Nukleaza, ki povzroči razrez DNA, je bila do nedavnega manjkajoči člen v partanatosu. Skupini raziskovalcev je uspelo odkriti, da je iskana nukleaza inhibitorni dejavnik migracije makrofagov (MIF). Pokazali so, da se med partanatosom MIF veže na AIF in se skupaj z njim premesti v jedro, kjer povzroči fragmentacijo DNA. Inhibicija nukleazne aktivnosti MIF se je v modelu možganske kapi pri miših odrazila v 75-odstotnem zmanjšanju volumna prizadetega tkiva, pospešeno pa je bilo tudi okrevanje. Rezultati raziskave odpirajo potencialne možnosti za zdravljenje akutnih in kroničnih nevroloških bolezni, v katerih nastopi partanatos. | |||
===Nina Varda: Kompleksne molekule, ki se zvijajo kot proteini, lahko nastanejo spontano=== | |||
Proteini in nukleinske kisline so ključne za delovanje živih organizmov. Zanje je značilno, da se zvijejo v posebne konformacije, ki določajo njihove funkcije. A načrt po katerem bi se makromolekule zvijale še ni bil odkrit. Tako se je razvilo področje raziskovanja foldamerov (sintetičnih oligomerov, ki se zvijajo v sekundarne in terciarne strukture npr. v vijačnice in plošče). Otto in sodelavci so v svoji raziskavi predstavili kompleksno molekulo, ki lahko nastane spontano. Iz gradnika, ki ga sestavljata aminokislinska in adeninska podenota, so pridobili makrocikel iz 15 gradnikov. 15mer se je tako v kristalni obliki, kot tudi v raztopini zvil, zaradi nekovalentnih interakcij med gradniki. Najbolj opazen strukturni motiv je nalaganje aromatskih obročev v kupe (sekundarne strukture). Ena molekula se zvije v 5 kupov, pri čemer je vsak sestavljen iz treh fenilnih obročev in dveh adeninskih obročev. Ker so kupi med sabo orientirani, je prisotna tudi terciarna struktura. Pri nekaterih foldamerih so že bile odkrite katalitske in inhibitorne lastnosti. Ker so foldameri, ki so zaradi svoje terciarne zgradbe relativno kompleksni, sposobni spontanega nastanka, je možno, da so se pojavili in imeli pomembno vlogo že v zgodnjih fazah nastanka življenja. | |||
===Anja Konjc: Nanodelci v boju proti raku=== | |||
Nanodelci postajajo čedalje pomembnejši pri razvoju zdravil, saj imajo določene posebnosti, ki omogočajo tarčno usmerjanje zdravil in zmanjševanje njihovih stranskih učinkov (npr. pri kemoterapiji). Vendar so predhodne raziskave pokazale določene pomanjkljivosti. S sintezo posebnega ščita, imenovanega proteinski koronski ščit (PCS), so raziskovalci rešili te omejitve. Ugotovili so namreč, da PCS zmanjša interakcije nanodelcev s serumskimi proteini in omogoči, da makrofagi teh delcev ne fagocitirajo. Tako nanodelci ostanejo več časa v krvi in prenesejo zdravila na ciljno mesto (npr. v tumorje). Nanodelci so namreč sposobni prenašati sorazmerno velike količine molekul (npr. zdravil), ki jih vstavimo v njihove pore. Znanstveniki so PCS sintetizirali tako, da so nanodelce prevlekli s posebnimi proteini. Obnašanje tako prevlečenih nanodelcev so opazovali z različnimi poskusi. Ko so mišim vbrizgali različne nanodelce, so ugotovili, da so se v tumorjih najbolj nakopičili tisti s PCS. To je dokazalo hipotezo, da lahko ti nanodelci uspešno prinesejo zdravila v tumorje, ne da bi pri tem prišlo do imunskega odziva, torej fagocitoze delcev. Zato bodo tudi v prihodnje nanodelci s PCS imeli pomembno vlogo pri zdravljenju različnih obolenj, ne le rakavih, saj povečujejo učinkovitost zdravljenja. | |||
===Maja Kolar: Pomen velikosti aksonskih mitohondrijev v možganih=== | |||
Nevroni spadajo med najbolj polarizirane celice v naravi. To jim omogoča oblikovanje različnih lokaliziranih struktur, kot so akson in dendriti. Možgansko skorjo sestavljajo kortikalni nevroni, v katerih se oblike mitohondrijev razlikujejo glede na lokacijo; v dendritih in somi so dolge, cevaste oblike, medtem ko so v izrastkih aksona veliko krajši in kroglasti. Majhnost aksonskih mitohondrijev je povezana predvsem s fizijo oz. binarno cepitvijo, ki poteka prek oligomerizacije Drp1 proteina iz skupine dinaminov zunanji membrani. Ker je Drp1 citoplazemski protein, se z mitohondrijsko zunanjo membrano veže prek 4 različnih receptorjev, nevroznanstveniki Univerze v Columbiji, Lewis in sodelavci, pa so raziskovali predvsem receptor MFF (ang. mitochondrial fission factor), saj je v kortikalnih nevronih najpogostejši. Ekspresijo MFF gena so Lewis in sodelavci zavirali prek uporabe shRNA (ang. short hairpin RNA) ki je umetno izdelan RNA in se uporablja za RNA posege pri zaviranju ekspresije tarčnih genov. Z raziskavo so dokazali, da MFF nima znatnega vpliva na membranski potencial mitohondrijev in na njihovo skupno sposobnost pridelave ATP, je pa z zmanjšanim delovanjem izrazito vplival na povečanje presinaptičnih mitohondrijev. To je povečalo mitohondrijsko sposobnost absorpcije Ca2+ ionov med nevrotransmisijo, kar je vodilo do zmanjšanega presinaptičnega citoplazemskega kopičenja Ca2+. Posledično se je zmanjšalo sproščanje nevrotransmitorjev v sinaptično špranjo, zmanjšala aksonska razvejanost v možganih in oslabila medsebojna povezanost nevronov. | |||
Latest revision as of 13:16, 3 March 2019
Ana Scott: Nukleaza, ki povzroči partanatos oziroma od PARP-1 odvisno celično smrt
Partanatos je ena izmed vrst celične smrti, ki nastopi zaradi prevelike aktivnosti poli(ADP-riboza) polimeraze 1 (PARP-1) v jedru. Pogost je v primeru možganske kapi, infarkta in nevrodegenerativnih boleznih, zaradi česar bi boljše poznavanje samega procesa omogočilo razvoj novih načinov zdravljenja teh obolenj. V predhodnih raziskavah so ugotovili, da partanatos nastopi, ko molekule poli-ADP-riboze, ki jih PARP-1 sintetizira, preidejo iz jedra v citosol, kjer aktivirajo premestitev indukcijskega faktorja apoptoze (AIF) iz mitohondrijev v jedro. Temu sledi razrez DNA. Nukleaza, ki povzroči razrez DNA, je bila do nedavnega manjkajoči člen v partanatosu. Skupini raziskovalcev je uspelo odkriti, da je iskana nukleaza inhibitorni dejavnik migracije makrofagov (MIF). Pokazali so, da se med partanatosom MIF veže na AIF in se skupaj z njim premesti v jedro, kjer povzroči fragmentacijo DNA. Inhibicija nukleazne aktivnosti MIF se je v modelu možganske kapi pri miših odrazila v 75-odstotnem zmanjšanju volumna prizadetega tkiva, pospešeno pa je bilo tudi okrevanje. Rezultati raziskave odpirajo potencialne možnosti za zdravljenje akutnih in kroničnih nevroloških bolezni, v katerih nastopi partanatos.
Nina Varda: Kompleksne molekule, ki se zvijajo kot proteini, lahko nastanejo spontano
Proteini in nukleinske kisline so ključne za delovanje živih organizmov. Zanje je značilno, da se zvijejo v posebne konformacije, ki določajo njihove funkcije. A načrt po katerem bi se makromolekule zvijale še ni bil odkrit. Tako se je razvilo področje raziskovanja foldamerov (sintetičnih oligomerov, ki se zvijajo v sekundarne in terciarne strukture npr. v vijačnice in plošče). Otto in sodelavci so v svoji raziskavi predstavili kompleksno molekulo, ki lahko nastane spontano. Iz gradnika, ki ga sestavljata aminokislinska in adeninska podenota, so pridobili makrocikel iz 15 gradnikov. 15mer se je tako v kristalni obliki, kot tudi v raztopini zvil, zaradi nekovalentnih interakcij med gradniki. Najbolj opazen strukturni motiv je nalaganje aromatskih obročev v kupe (sekundarne strukture). Ena molekula se zvije v 5 kupov, pri čemer je vsak sestavljen iz treh fenilnih obročev in dveh adeninskih obročev. Ker so kupi med sabo orientirani, je prisotna tudi terciarna struktura. Pri nekaterih foldamerih so že bile odkrite katalitske in inhibitorne lastnosti. Ker so foldameri, ki so zaradi svoje terciarne zgradbe relativno kompleksni, sposobni spontanega nastanka, je možno, da so se pojavili in imeli pomembno vlogo že v zgodnjih fazah nastanka življenja.
Anja Konjc: Nanodelci v boju proti raku
Nanodelci postajajo čedalje pomembnejši pri razvoju zdravil, saj imajo določene posebnosti, ki omogočajo tarčno usmerjanje zdravil in zmanjševanje njihovih stranskih učinkov (npr. pri kemoterapiji). Vendar so predhodne raziskave pokazale določene pomanjkljivosti. S sintezo posebnega ščita, imenovanega proteinski koronski ščit (PCS), so raziskovalci rešili te omejitve. Ugotovili so namreč, da PCS zmanjša interakcije nanodelcev s serumskimi proteini in omogoči, da makrofagi teh delcev ne fagocitirajo. Tako nanodelci ostanejo več časa v krvi in prenesejo zdravila na ciljno mesto (npr. v tumorje). Nanodelci so namreč sposobni prenašati sorazmerno velike količine molekul (npr. zdravil), ki jih vstavimo v njihove pore. Znanstveniki so PCS sintetizirali tako, da so nanodelce prevlekli s posebnimi proteini. Obnašanje tako prevlečenih nanodelcev so opazovali z različnimi poskusi. Ko so mišim vbrizgali različne nanodelce, so ugotovili, da so se v tumorjih najbolj nakopičili tisti s PCS. To je dokazalo hipotezo, da lahko ti nanodelci uspešno prinesejo zdravila v tumorje, ne da bi pri tem prišlo do imunskega odziva, torej fagocitoze delcev. Zato bodo tudi v prihodnje nanodelci s PCS imeli pomembno vlogo pri zdravljenju različnih obolenj, ne le rakavih, saj povečujejo učinkovitost zdravljenja.
Maja Kolar: Pomen velikosti aksonskih mitohondrijev v možganih
Nevroni spadajo med najbolj polarizirane celice v naravi. To jim omogoča oblikovanje različnih lokaliziranih struktur, kot so akson in dendriti. Možgansko skorjo sestavljajo kortikalni nevroni, v katerih se oblike mitohondrijev razlikujejo glede na lokacijo; v dendritih in somi so dolge, cevaste oblike, medtem ko so v izrastkih aksona veliko krajši in kroglasti. Majhnost aksonskih mitohondrijev je povezana predvsem s fizijo oz. binarno cepitvijo, ki poteka prek oligomerizacije Drp1 proteina iz skupine dinaminov zunanji membrani. Ker je Drp1 citoplazemski protein, se z mitohondrijsko zunanjo membrano veže prek 4 različnih receptorjev, nevroznanstveniki Univerze v Columbiji, Lewis in sodelavci, pa so raziskovali predvsem receptor MFF (ang. mitochondrial fission factor), saj je v kortikalnih nevronih najpogostejši. Ekspresijo MFF gena so Lewis in sodelavci zavirali prek uporabe shRNA (ang. short hairpin RNA) ki je umetno izdelan RNA in se uporablja za RNA posege pri zaviranju ekspresije tarčnih genov. Z raziskavo so dokazali, da MFF nima znatnega vpliva na membranski potencial mitohondrijev in na njihovo skupno sposobnost pridelave ATP, je pa z zmanjšanim delovanjem izrazito vplival na povečanje presinaptičnih mitohondrijev. To je povečalo mitohondrijsko sposobnost absorpcije Ca2+ ionov med nevrotransmisijo, kar je vodilo do zmanjšanega presinaptičnega citoplazemskega kopičenja Ca2+. Posledično se je zmanjšalo sproščanje nevrotransmitorjev v sinaptično špranjo, zmanjšala aksonska razvejanost v možganih in oslabila medsebojna povezanost nevronov.