|
|
(47 intermediate revisions by 27 users not shown) |
Line 1: |
Line 1: |
| [[TBK2017-seminar|Nazaj na osnovno stran]] | | [[TBK2017-seminar|Nazaj na osnovno stran]] |
| ===Ana Scott: Naslov seminarja=== | | ===Ana Scott: Nukleaza, ki povzroči partanatos oziroma od PARP-1 odvisno celično smrt=== |
| Tekst ....
| |
| | |
| '''Uroš Prešern: Nukleaza, ki povzroči partanatos oziroma od PARP-1 odvisno celično smrt'''
| |
|
| |
|
| Partanatos je ena izmed vrst celične smrti, ki nastopi zaradi prevelike aktivnosti poli(ADP-riboza) polimeraze 1 (PARP-1) v jedru. Pogost je v primeru možganske kapi, infarkta in nevrodegenerativnih boleznih, zaradi česar bi boljše poznavanje samega procesa omogočilo razvoj novih načinov zdravljenja teh obolenj. V predhodnih raziskavah so ugotovili, da partanatos nastopi, ko molekule poli-ADP-riboze, ki jih PARP-1 sintetizira, preidejo iz jedra v citosol, kjer aktivirajo premestitev indukcijskega faktorja apoptoze (AIF) iz mitohondrijev v jedro. Temu sledi razrez DNA. Nukleaza, ki povzroči razrez DNA, je bila do nedavnega manjkajoči člen v partanatosu. Skupini raziskovalcev je uspelo odkriti, da je iskana nukleaza inhibitorni dejavnik migracije makrofagov (MIF). Pokazali so, da se med partanatosom MIF veže na AIF in se skupaj z njim premesti v jedro, kjer povzroči fragmentacijo DNA. Inhibicija nukleazne aktivnosti MIF se je v modelu možganske kapi pri miših odrazila v 75-odstotnem zmanjšanju volumna prizadetega tkiva, pospešeno pa je bilo tudi okrevanje. Rezultati raziskave odpirajo potencialne možnosti za zdravljenje akutnih in kroničnih nevroloških bolezni, v katerih nastopi partanatos. | | Partanatos je ena izmed vrst celične smrti, ki nastopi zaradi prevelike aktivnosti poli(ADP-riboza) polimeraze 1 (PARP-1) v jedru. Pogost je v primeru možganske kapi, infarkta in nevrodegenerativnih boleznih, zaradi česar bi boljše poznavanje samega procesa omogočilo razvoj novih načinov zdravljenja teh obolenj. V predhodnih raziskavah so ugotovili, da partanatos nastopi, ko molekule poli-ADP-riboze, ki jih PARP-1 sintetizira, preidejo iz jedra v citosol, kjer aktivirajo premestitev indukcijskega faktorja apoptoze (AIF) iz mitohondrijev v jedro. Temu sledi razrez DNA. Nukleaza, ki povzroči razrez DNA, je bila do nedavnega manjkajoči člen v partanatosu. Skupini raziskovalcev je uspelo odkriti, da je iskana nukleaza inhibitorni dejavnik migracije makrofagov (MIF). Pokazali so, da se med partanatosom MIF veže na AIF in se skupaj z njim premesti v jedro, kjer povzroči fragmentacijo DNA. Inhibicija nukleazne aktivnosti MIF se je v modelu možganske kapi pri miših odrazila v 75-odstotnem zmanjšanju volumna prizadetega tkiva, pospešeno pa je bilo tudi okrevanje. Rezultati raziskave odpirajo potencialne možnosti za zdravljenje akutnih in kroničnih nevroloških bolezni, v katerih nastopi partanatos. |
|
| |
|
| '''Doroteja Armič: Pretvorba mišjih fibroblastov v pluripotentne matične celice s pomočjo tehnologije CRISPR'''
| |
|
| |
| Pluripotentne matične celice so še nediferencirane celice, ki imajo sposobnost, da se diferencirajo v skoraj vse tipe celic. Poznamo več vrst pluripotentnih matičnih celic. Ene izmed njih so inducirane pluripotentne matične celice (celice iPS). To so pluripotentne celice, ki jih umetno dediferencirajo iz odraslih somatskih celic. Leta 2006 so odkrili postopek pridobivanja celic iPS iz mišjih fibroblastov. Ugotovili so, da so za reprogramiranje somatskih celic najpomembnejši štirje transkripcijski dejavniki, in sicer Oct4, Sox2, Klf4 in c-Myc. Letos pa je skupini znanstvenikov uspelo odkriti nov, bolj enostaven postopek pridobivanja celic iPS. Ugotovili so namreč, da lahko sprožijo njihov nastanek že z aktivacijo enega samega gena – Oct4 ali Sox2. Aktivacija Sox2-promotorja oziroma Oct4-promotorja in Oct4-ojačevalca hkrati pa nato povzroči aktivacijo ostalih genov, ki sodelujejo pri vzpostavitvi pluripotentnosti v celicah. Za aktivacijo genov so uporabili tehnologijo CRISPR. Primerjali so uporabo dveh sistemov – dCas9-SunTag-VP64 in dCas9-SunTag-p300core. V obeh primerih so dobili primerljive rezultate. Uporaba celic iPS je pomembna v regenerativni medicini, saj lahko zamenja uporabo človeških embrionalnih matičnih celic. Z uporabo celic iPS, generiranih iz pacientovih lastnih celic, ne bi prišlo do zavrnitvenih reakcij, prav tako pa bi se izognili etičnih pomislekov. Znanstveniki predvidevajo, da lahko tehnologija reprogramiranja celic, ki so jo uporabili na mišjih celicah, z manjšimi spremembami deluje tudi na človeških celicah.
| |
|
| |
| '''Dea Simonič: Sprožilci avtoimunskih bolezni in vzroki za nekontrolirano širjenje le-teh po telesu'''
| |
|
| |
| Avtoimunska bolezen je bolezen, ki nastane zaradi pretiranega odziva imunskega sistema na celice, ki so last organizma. Veliko vlogo pri nastanku avtoimunske bolezni imajo limfociti B, ki omogočajo humoralni imunski odziv. Transkripcijski faktor T-bet v limfocitih B povzroči razvoj ABC, te celice so pa »pogon« avtoimunske bolezni. Avtoimunska bolezen se v veliki večini primerov razširi po telesu . Vzrok tega so ravno limfociti B, ki razširijo svoj napad po telesu in pride do širjenja epitopa. Ta proces se začne, ko imunski sistem napade antigene na drugih delih telesa, ki jih na začetku ni hotel uničiti. Telo začne pospeševano uničevati lastna tkiva. Da bi razumeli, zakaj pride do tega mehanizma so raziskovalci uporabili fluorescenčne markerje beljakovin, ki razlikujejo različne celične skupke limfocitov B (oziroma germinalne centre), na miših obolelih z lupusom. V germinalnih centrih limfociti B »tekmujejo« med sabo, kateri bo naredil najboljše protitelo, ki bo nevtraliziralo zaznano grožnjo. Te germinalne skupke so s pomočjo markerjev zaznali kot 10 različnih barv. Po tednu ali dveh začne prevladovati ena sama barva. Ta germinalni skupek je ustvaril najboljše protitelo in skupaj z ostalimi limfociti aktiviral avtoimunski protinapad. S to študijo so raziskovalci naredili velik korak v smer zaustavitve oziroma zdravljenja avtoimunske bolezni.
| |
|
| |
| '''Valeriya Musina: Metalopeptid bakrov(II) fenantrolin tarčno onemogoči delovanje mitohondrijev v matičnih celicah raka dojke'''
| |
|
| |
| Uničenje mitohondrijev je eden najbolj obetavnih pristopov pri razvoju novih zdravil proti raku. Znanstveniki so sintetizirali peptid, ki vsebuje baker, ki ga zlahka sprejmejo mitohondriji v matičnih celicah raka dojk, kjer le ta učinkovito povzroča apoptozo. Rakaste celice, ki imajo povečani metabolizem, ne samo, da vsebujejo več mitohondrijev kot zdrave celice, temveč so te tudi drugačni, strukturno in funkcionalno. Zaradi posebnih značilnosti in njihove odločilne vloge v presnovi celic so maligne mitohondrije pomembne tarčej za nove terapevtske spojine. Mitohondrije je možno uničiti z uvajanjem sredstev za proizvajanje reaktivnih vrst kisika (ROS). Te reaktivne spojine ovirajo metabolizem mitohondrijev. Kot močan ROS generator je bila predlagana organokovinska spojina bakrov(II) fenantrolin. Za dostavo in prenos skozi zunanjo membrano mitohondrija pa so bakrov(II) fenantrolin vezali na specifičen peptid, ki prodira v mitohondrije. Preizkusi so bili izvedeni z dvema celicnima linijama raka dojke, ena celična linija je vsebovala matične celice raka dojk. Rezultati so bili : odvisna od količine odmerka izguba sposobnosti za preživetje, razpad membran mitohondrijev, nastanek ROS in slabši metabolizma mitohondrijev. Zdravilo je bolj vplivalo na matične celice raka, kar je bilo razloženo z večjo vsebnostjo mitohondrijev. Ta študija izpostavlja potencial metalopeptida tako za dostavo kot tudi za uničenje mitohondrijev, zlasti v matičnih celicah raka.
| |
|
| |
| '''Neža Štremfelj: Delovanje inzulinskih receptorjev'''
| |
|
| |
| Človeški inzulinski receptorji igrajo pomembno vlogo v človeškem telesu. Signalizacija z inzulinskimi receptorji igra ključno vlogo pri regulaciji metabolizma in pri rasti v večceličnih organizmih. Nepravilno delovanje inzulinskih receptorjev je povezano z mnogimi hujšimi obolenji, na primer z rakavim obolenjem, diabetesom in Alzheimerjevo boleznijo.
| |
| Glavna ideja raziskave, ki jo opisuje članek, ki sem si ga izbrala za osnovo moje seminarske naloge je, da vezava inzulina na inzulinski receptor preoblikuje zunajcelični del transmembranskih proteinov (ektodomeno) receptorja iz U-konformacije v T-konformacijo. Prerazporeditev v ektodomeni se razširi tudi na transmembranske domene, ki so, ko je receptor neaktiviran pomaknjene narazen, ob vezavi inzulina pa se pomaknejo skupaj, kar omogoči fosforilizacijo tirozin kinaze v citoplazmi. Pri transmembranski signalizaciji z inzulinskim receptorjem poleg dimerizacije z vezavo liganda pride tudi do strukturnih sprememb znotraj receptorskega dimera.
| |
|
| |
| '''Marko Pavleković: Prehajanje imunskih celic, povzročiteljic multiple skleroze, skozi krvno-možgansko pregrado'''
| |
|
| |
| Multipla skleroza je avtoimunska bolezen, pri kateri limfociti napadejo živčne celice in jih demielinizirajo ter tako škodujejo prenosu signalov med nevroni. Iz predhodnih raziskav so odkrili, da sta za multiplo sklerozo najbolj krivi celiti pomagalki T 1 in T 17. Da bi prišli do centralnega živčnega sistema morata celici najprej prečkati vaskularno pregrado. Kako to dosežeta so raziskovali znanstveniki z univerze v Kolumbiji in z univerze v Kaliforniji. Z dvo-fotonsko mikroskopijo so opazovali tesne stike pri miših obolelih za eksperimentalnim avtoimunskim encefalomielitisom, ki je živalski primer multiple skleroze. Ugotovili so, da krvno-možgansko pregrado preideta na dva različna načina: s transcitozo in skozi prekinjene tesne stike med endotelnimi celicami. S pomočjo miši, ki jim je primanjkovalo kaveol (kaveolina1) pa so dokazali, da za prehod do centralnega živčnega sistema celica T 1 izkorišča transcitozo, medtem ko celica T 17 prehaja skozi prekinjene tesne stike. Te ugotovitve bi lahko močno pomagale pri nadaljnjem zdravljenju bolezni, kjer bi se osredotočili na preprečevanje dostopa imunskih celic do centralnega živčnega sistema.
| |
|
| |
| '''Rebeka Dajčman: več mehanizmov poganja dinamiko kalcijevega signala okoli lasersko povzročene rane epitelija'''
| |
|
| |
| Kalcij igra ključno vlogo pri skoraj vseh procesih v celici. Razni signali, kot je na primer sinteza RNA in DNA ali pa migracija celic, je posledica spremembe intracelularne koncentracije kalcija. Spremembo koncentracije lahko zaznamo z merjenjem intenzivnosti fluorescentne svetlobe, ki jo oddajajo GCaMP proteini. Če celice poškodujemo z laserskim mehurčkom, ustvarimo rano, ki je podobna udarcu. Sledijo trije mehanizmi signaliziranja, ki so odvisni od velikosti rane. Takoj po poškodbi celične membrane uide kalcij iz ekstracelularne tekočine v citosol, kjer se koncentracija kalcija dvigne. Kalcij nato skupaj s signalnimi molekulami difundira v okoliške celice in temu pravimo prvi val oz. takojšnji odziv. Po 45 sekundah mu sledi drugi močnejši valj, ki pa se širi počasneje, ker skozi membrano prehajajo večji signalni proteini. Ti signali sprožijo sistemski odziv na poškodbo, ki poskrbi, da se celice v najkrajšem možnem času regenerirajo. Da pri regeneraciji povrhnjice kože ne nastanejo brazgotine poskušamo v tkivo, ki je bilo poškodovano, vstaviti lasne mešičke. Ti pripomorejo k nastajanju maščobe in tako preprečijo brazgotinjenje. Če se poškoduje žilna stena pa sistem poskrbi za nastanek strdkov, ki so sestavljeni iz krvnih celic in fibrina. Trombociti navijejo fibrin v toge zvitke in ti se s pomočjo posebnih encimov raztopijo v krvi. Nova odkritja o celičnemu celjenju pripomorejo k hitrejšemu in učinkovitejšemu celjenju ran.
| |
|
| |
| '''Gašper Anton Komatar: Tvorba kompleksa receptorjev ApoER2, ephirinB2 in AMPAR, ki jih povezuje GRIP1, sodeluje pri vorbi spomina'''
| |
|
| |
| LTP ali dolgoročna potenciacija pomeni povečanje sinaptične moči za dolgo časa in ker gre pri tvorbi spominov prav za povečanje sinaptične aktivnosti, je med znanstveniki priznan kot najverjetnejši model učenja in tvorbe spomina na celični ravni. Med LTP se poveča število receptorjev AMPA v postsinaptični membrani, kar še dodatno poveča sinaptično moč.
| |
| Kakšen je mehanizem in katere molekule sodelujejo pri prenosu in vgradnji AMPAR v postsinaptično membrano, to je bilo glavno vprašanje raziskovalcev v članku, ki sem si ga izbral za seminarsko nalogo. Že dlje časa je bilo znano, da ephirinB2, ApoER2 in Reelin sodelujejo pri razvoju možganov kot regulatorji migracije nevronov. Znanstveniki so preverili, če sodelujejo tudi pri procesih prenosa in vgradnje AMPAR v membrano. S tehniko knockout (inaktivacija določenih genov) ter z imunoprecepcijo, so selektivno inhibirali interakcije med proteini, rezultate pa so beležili s fluorescentnimi analizami in prenosom western. Ugotovili so, da tvorba kompleksa multiplih receptorjev ApoER2/ephirinB2/AMPAR in GRIP1 povzroči vgradnjo tega AMPAR na membrano dendrita in sproži signalne kaskade, ki regulirajo vgradnjo novih AMPAR. Ko je bila interakcija med temi proteini inhibirana, so bili nevroni nezmožni reagirati na spremembe v njihovem omrežju, kar je zmanjšano sinaptično aktivnost. To pomeni, da skupki teh proteinov vzdržujejo oz. ojačajo sinaptično aktivnost. S tem so znanstveniki dokazali, da zgoraj omenjen kompleks receptorjev zares sodeluje pri tvorbi spominov.
| |
|
| |
| '''Laura Gašperšič: Alzheimerjeva bolezen: povrnitev zmožnosti pomnjenja z inhibicijo interakcije med Sp3 in HDAC2'''
| |
|
| |
| Pri Alzheimerjevi bolezni je glavni simptom okvara spomina, do česar pride zaradi utišanja genov, ki sodelujejo pri tvorbi novih spominov. Do utišanja pride zaradi deacetilacije histonov, ki jo povzročijo encimi histonske deacetilaze (HDAC). Pri utišanju genov za tvorbo spominov je najpomembnejši HDAC2. Njegova raven je pri bolnikih z Alzheimerjevo boleznijo povišana. Encimi HDAC so si po zgradbi podobni, poleg tega tvori en encim več različnih kompleksov, kar lahko pri inhibiciji encimov HDAC sproži tudi stranske učinke. Raziskovalci so zato želeli najti molekulo, s katero se HDAC2 veže na promotorje genov za učenje in spomin. S prvimi raziskavami so določili 3 najbolj verjetne proteine: Tdp2, Sap30 in Sp3, z meritvami pa so ugotovili, da Sp3 vpliva na delovanje sinapse. V nadaljnjih raziskavah so dokazali, da kompleks med HDAC2 in Sp3 v bolezenskem stanju z vezavo na promotorje negativno uravnava izražanje genov povezanih z delovanjem sinapse. V zadnjem delu raziskave so želeli določiti del HDAC2, ki se veže na Sp3 in inhibirati nastanek kompleksa med HDAC2 in Sp3. Ugotovili so, da se na Sp3 veže C-konec HDAC2. C-končni fragment HDAC2 se že sam veže na Sp3, s čimer se zmanjša število kompleksov med HDAC2 in Sp3 na promotorjih. Fragment HDAC2 pa se ne veže na druge proteine, s katerimi HDAC nadzorujejo druge pomembne procese. Izražanje C-končnega fragmenta HDAC2 torej predstavlja obetaven način, s katerim bi lahko zdravili nevrološke bolezni povezane z okvarami spomina.
| |
|
| |
| '''Maja Škof: Pomen S-proteinov pri prilagajanju koronavirusov na okolje'''
| |
|
| |
| Koronavirusi so razširjeni po vsem svetu in največkrat povzročajo okužbe dihal pri ljudeh in živalih. Spadajo med RNA viruse, za katere je značilna visoka stopnja genskih mutacij, kar jim omogoča, da se uspešno prilagajajo na okolje. S-proteini so trimerni proteini, s katerimi se koronavirusi vežejo na gostiteljsko celico, nato pa sprožijo spojitev virusne in celične membrane, kar omoči, da virusna RNA preide v celico. S-proteini so sestavljeni iz dveh podenot, S1 in S2. Pri vezavi na celični protein sodeluje zunanji del podenote S1, ki je v obliki treh podaljšanih zank (receptorsko-vezavne zanke). Med aminokislinami S-proteina in receptorskega proteina se vzpostavijo medmolekulske vezi, nato pa podenota S2 sproži spojitev s celično membrano. S1 je tudi glavna tarča protiteles, ki preprečujejo virusu, da bi vstopil v celico. A protitelo, ki se uspešno veže na sev virusa, ob ponovni okužbi virusa ne prepozna več. To je posledica naključnih genskih mutacij. Analiza genomov koronavirusov, izoliranih v zadnjih 50-ih letih, je pokazala, da se receptorsko-vezavne zanke S-proteinon med seboj občutno razlikujejo. Kar 73% aminokislin na receptorsko-vezavnih zankah variira. Odstotek je ravno dovolj velik, da se koronavirusi še vedno lahko vežejo na receptor, protitelesa pa jih ne zaznajo več.
| |
|
| |
|
| '''Tadej Medved: Identifikacija vezavnih mest proteinov WASP na aktinski ojedritveni kompleks Arp2/3'''
| | ===Nina Varda: Kompleksne molekule, ki se zvijajo kot proteini, lahko nastanejo spontano=== |
|
| |
|
| Ključnega pomena za procese, kot so celično gibanje in endocitoza, so aktinski filamenti. Nastanek in prerazporeditev le-teh nadzorujejo določeni proteinski kompleksi; za razvejane aktinske filamente je to Arp2/3. Le-ta je sestavljen iz več podenot; najpomembnejši sta Arp2 in Arp3, ki sta po strukturi podobni aktinu. Na Arp2/3 se vežejo proteini družine WASP, ki spravijo proteinski kompleks v konformacijo, pri kateri lahko dejansko vrši nastanek novih filamentov. Za vse WASP-e velja, da se na Arp2/3 vežejo z odsekom VCA(verprolin, central, acidic), a do podatkov o strukturah takšnih vezi se znanost še ni dokopala. S pomočjo "cross-linking" masne spektrometrije in "reversed phase liquid" kromatografije je pred kratkim nastal model, ki zadovoljivo opisuje mesta, na katera se vežejo WASP-i. Vezava namreč poteka na dveh mestih: na hrbtni strani Arp2/3 in na spodnji strani kompleksa, pri Arp2 in poddomeno ARPC1. Na Arp2/3 se pri WASP-u veže odsek CA, konec odseka V pa ostaja prost za vezavo aktina. Izkazalo se je, da se za uspešno nukleacijo aktina vezavni mesti za aktin in CA ne smeta prekrivati; odsek WASP C pa je še zlasti pomemben za aktivacijo Arp2/3.
| | Proteini in nukleinske kisline so ključne za delovanje živih organizmov. Zanje je značilno, da se zvijejo v posebne konformacije, ki določajo njihove funkcije. A načrt po katerem bi se makromolekule zvijale še ni bil odkrit. Tako se je razvilo področje raziskovanja foldamerov (sintetičnih oligomerov, ki se zvijajo v sekundarne in terciarne strukture npr. v vijačnice in plošče). Otto in sodelavci so v svoji raziskavi predstavili kompleksno molekulo, ki lahko nastane spontano. Iz gradnika, ki ga sestavljata aminokislinska in adeninska podenota, so pridobili makrocikel iz 15 gradnikov. 15mer se je tako v kristalni obliki, kot tudi v raztopini zvil, zaradi nekovalentnih interakcij med gradniki. Najbolj opazen strukturni motiv je nalaganje aromatskih obročev v kupe (sekundarne strukture). Ena molekula se zvije v 5 kupov, pri čemer je vsak sestavljen iz treh fenilnih obročev in dveh adeninskih obročev. Ker so kupi med sabo orientirani, je prisotna tudi terciarna struktura. Pri nekaterih foldamerih so že bile odkrite katalitske in inhibitorne lastnosti. Ker so foldameri, ki so zaradi svoje terciarne zgradbe relativno kompleksni, sposobni spontanega nastanka, je možno, da so se pojavili in imeli pomembno vlogo že v zgodnjih fazah nastanka življenja. |
|
| |
|
| '''Tina Zavodnik: Disfunkcionalni mitohondriji s pomočjo ROS zavirajo translacijsko aktivnost'''
| | ===Anja Konjc: Nanodelci v boju proti raku=== |
|
| |
|
| Mitohondriji so zelo kompleksni organeli, ki za normalno opravljanje svojih funkcij potrebujejo številne proteine. Večina teh proteinov se sintetizira v citoplazmi, nato pa so uvoženi nazaj v mitohondrije. Ob morebitni okvari transportnih mehanizmov in posledično okvarjenih mitohondrijih pa pride do akumulacije proteinov v citoplazmi, kar poruši celično ravnovesje. Skupina znanstvenikov iz Nemčije in Poljske pa je odkrila mehanizem, ki poškodovanim mitohondrijem omogoča nadzor nad sintezo proteinov z induciranjem reverzibilnih sprememb na translacijskem mehanizmu. Kot signal uporabijo ROS, ki povzroči oksidacijo tiolov na peptidih, ki so sestavni deli translacijskega mehanizma. Do odkritja so prišli s kvantitativno analizo cisteinskih ostankov oz. tiolnih skupin na proteomu kvasovke Saccharomyces cerevisia ter izdelali obsežno zbirko oksidacijskih stanj peptidov, ki so vsebovali tiolne skupine. Analizo so ponovili še na gojenih celicah kvasovke, ki so bile izpostavljene induciranemu oksidativnemu stresu s pomočjo H2O2, ter na mutiranih celicah z disfunkcionalnimi mitohondriji. Pri obojih so zaznali povečano oksidacijo Cys-peptidov in zmanjšano translacijsko aktivnost. Z odstranitvijo stresorskega faktorja pa se je translacijska aktivnost delno do popolnoma obnovila, kar dokazuje, da je oksidacija peptidov, ki so del mehanizmov za sintetiziranje novih proteinov, reverzibilen proces. Cisteinski ostanki torej delujejo kot nekakšni senzorji za ROS in ob oksidativnem stresu inhibirajo sintetiziranje novih proteinov.
| | Nanodelci postajajo čedalje pomembnejši pri razvoju zdravil, saj imajo določene posebnosti, ki omogočajo tarčno usmerjanje zdravil in zmanjševanje njihovih stranskih učinkov (npr. pri kemoterapiji). Vendar so predhodne raziskave pokazale določene pomanjkljivosti. S sintezo posebnega ščita, imenovanega proteinski koronski ščit (PCS), so raziskovalci rešili te omejitve. Ugotovili so namreč, da PCS zmanjša interakcije nanodelcev s serumskimi proteini in omogoči, da makrofagi teh delcev ne fagocitirajo. Tako nanodelci ostanejo več časa v krvi in prenesejo zdravila na ciljno mesto (npr. v tumorje). Nanodelci so namreč sposobni prenašati sorazmerno velike količine molekul (npr. zdravil), ki jih vstavimo v njihove pore. Znanstveniki so PCS sintetizirali tako, da so nanodelce prevlekli s posebnimi proteini. Obnašanje tako prevlečenih nanodelcev so opazovali z različnimi poskusi. Ko so mišim vbrizgali različne nanodelce, so ugotovili, da so se v tumorjih najbolj nakopičili tisti s PCS. To je dokazalo hipotezo, da lahko ti nanodelci uspešno prinesejo zdravila v tumorje, ne da bi pri tem prišlo do imunskega odziva, torej fagocitoze delcev. Zato bodo tudi v prihodnje nanodelci s PCS imeli pomembno vlogo pri zdravljenju različnih obolenj, ne le rakavih, saj povečujejo učinkovitost zdravljenja. |
|
| |
|
| '''Tina Kolenc Milavec: Vezava kalcija na karboksilni konec α-sinukleina uravnava interakcije med sinaptičnimi vezikli'''
| | ===Maja Kolar: Pomen velikosti aksonskih mitohondrijev v možganih=== |
|
| |
|
| Alfa-sinuklein je majhen, v vodi topen protein brez stabilne terciarne strukture, ki ga genetsko in nevropatološko povezujejo s Parkinsonovo boleznijo, o njegovi vlogi pri razvoju bolezni pa še marsikaj ni znano. Nahaja se predvsem v živčnih končičih, kjer je ravnovesje med α-sinukleinom raztopljenim v citosolu in tistim vezanim na fosfolipidni dvosloj močno regulirano. Ker se α-sinuklein nahaja na območju, kjer koncentracija kalcija ves čas močno niha, so raziskovalci Lautenschläger ''et al.'' predpostavili, da je normalna fiziološka funkcija α-sinukleina odvisna od kalcija. Da bi bolje razumeli funkcijo tega proteina, so v raziskavi izvedli več ''ex vivo'' ter ''in vitro'' eksperimentov, s katerimi so skušali ugotoviti predvsem to, kako se α-sinuklein veže na membrano sinaptičnega vezikla ter kako koncentraciji kalcija in α-sinukleina vplivata na homeostazo sinaptičnih veziklov ter na združevanje α-sinukleina v fibrilarne skupke. Povečana koncentracija kalcija in/ali α-sinukleina namreč pod določenimi pogoji povzroča toksičnost in posledično celično smrt, saj α-sinuklein oligomerizira ter tvori dolge in debele netopne fibrile, ki so del Lewyjevih telesc – citoplazemskih vključkov, značilnih za Parkinsonovo bolezen. Iz medicinskega stališča pa je zanimiva ugotovitev, da isradipin (antagonist kalicevih kanalčkov) preprečuje fibrilizacijo, saj znižuje znotrajcelično koncentracijo kalcija, kar odpira nove možnosti za razvoj zdravil proti Parkinsonovi bolezni.
| | Nevroni spadajo med najbolj polarizirane celice v naravi. To jim omogoča oblikovanje različnih lokaliziranih struktur, kot so akson in dendriti. Možgansko skorjo sestavljajo kortikalni nevroni, v katerih se oblike mitohondrijev razlikujejo glede na lokacijo; v dendritih in somi so dolge, cevaste oblike, medtem ko so v izrastkih aksona veliko krajši in kroglasti. Majhnost aksonskih mitohondrijev je povezana predvsem s fizijo oz. binarno cepitvijo, ki poteka prek oligomerizacije Drp1 proteina iz skupine dinaminov zunanji membrani. Ker je Drp1 citoplazemski protein, se z mitohondrijsko zunanjo membrano veže prek 4 različnih receptorjev, nevroznanstveniki Univerze v Columbiji, Lewis in sodelavci, pa so raziskovali predvsem receptor MFF (ang. mitochondrial fission factor), saj je v kortikalnih nevronih najpogostejši. Ekspresijo MFF gena so Lewis in sodelavci zavirali prek uporabe shRNA (ang. short hairpin RNA) ki je umetno izdelan RNA in se uporablja za RNA posege pri zaviranju ekspresije tarčnih genov. Z raziskavo so dokazali, da MFF nima znatnega vpliva na membranski potencial mitohondrijev in na njihovo skupno sposobnost pridelave ATP, je pa z zmanjšanim delovanjem izrazito vplival na povečanje presinaptičnih mitohondrijev. To je povečalo mitohondrijsko sposobnost absorpcije Ca2+ ionov med nevrotransmisijo, kar je vodilo do zmanjšanega presinaptičnega citoplazemskega kopičenja Ca2+. Posledično se je zmanjšalo sproščanje nevrotransmitorjev v sinaptično špranjo, zmanjšala aksonska razvejanost v možganih in oslabila medsebojna povezanost nevronov. |
Nazaj na osnovno stran
Ana Scott: Nukleaza, ki povzroči partanatos oziroma od PARP-1 odvisno celično smrt
Partanatos je ena izmed vrst celične smrti, ki nastopi zaradi prevelike aktivnosti poli(ADP-riboza) polimeraze 1 (PARP-1) v jedru. Pogost je v primeru možganske kapi, infarkta in nevrodegenerativnih boleznih, zaradi česar bi boljše poznavanje samega procesa omogočilo razvoj novih načinov zdravljenja teh obolenj. V predhodnih raziskavah so ugotovili, da partanatos nastopi, ko molekule poli-ADP-riboze, ki jih PARP-1 sintetizira, preidejo iz jedra v citosol, kjer aktivirajo premestitev indukcijskega faktorja apoptoze (AIF) iz mitohondrijev v jedro. Temu sledi razrez DNA. Nukleaza, ki povzroči razrez DNA, je bila do nedavnega manjkajoči člen v partanatosu. Skupini raziskovalcev je uspelo odkriti, da je iskana nukleaza inhibitorni dejavnik migracije makrofagov (MIF). Pokazali so, da se med partanatosom MIF veže na AIF in se skupaj z njim premesti v jedro, kjer povzroči fragmentacijo DNA. Inhibicija nukleazne aktivnosti MIF se je v modelu možganske kapi pri miših odrazila v 75-odstotnem zmanjšanju volumna prizadetega tkiva, pospešeno pa je bilo tudi okrevanje. Rezultati raziskave odpirajo potencialne možnosti za zdravljenje akutnih in kroničnih nevroloških bolezni, v katerih nastopi partanatos.
Nina Varda: Kompleksne molekule, ki se zvijajo kot proteini, lahko nastanejo spontano
Proteini in nukleinske kisline so ključne za delovanje živih organizmov. Zanje je značilno, da se zvijejo v posebne konformacije, ki določajo njihove funkcije. A načrt po katerem bi se makromolekule zvijale še ni bil odkrit. Tako se je razvilo področje raziskovanja foldamerov (sintetičnih oligomerov, ki se zvijajo v sekundarne in terciarne strukture npr. v vijačnice in plošče). Otto in sodelavci so v svoji raziskavi predstavili kompleksno molekulo, ki lahko nastane spontano. Iz gradnika, ki ga sestavljata aminokislinska in adeninska podenota, so pridobili makrocikel iz 15 gradnikov. 15mer se je tako v kristalni obliki, kot tudi v raztopini zvil, zaradi nekovalentnih interakcij med gradniki. Najbolj opazen strukturni motiv je nalaganje aromatskih obročev v kupe (sekundarne strukture). Ena molekula se zvije v 5 kupov, pri čemer je vsak sestavljen iz treh fenilnih obročev in dveh adeninskih obročev. Ker so kupi med sabo orientirani, je prisotna tudi terciarna struktura. Pri nekaterih foldamerih so že bile odkrite katalitske in inhibitorne lastnosti. Ker so foldameri, ki so zaradi svoje terciarne zgradbe relativno kompleksni, sposobni spontanega nastanka, je možno, da so se pojavili in imeli pomembno vlogo že v zgodnjih fazah nastanka življenja.
Anja Konjc: Nanodelci v boju proti raku
Nanodelci postajajo čedalje pomembnejši pri razvoju zdravil, saj imajo določene posebnosti, ki omogočajo tarčno usmerjanje zdravil in zmanjševanje njihovih stranskih učinkov (npr. pri kemoterapiji). Vendar so predhodne raziskave pokazale določene pomanjkljivosti. S sintezo posebnega ščita, imenovanega proteinski koronski ščit (PCS), so raziskovalci rešili te omejitve. Ugotovili so namreč, da PCS zmanjša interakcije nanodelcev s serumskimi proteini in omogoči, da makrofagi teh delcev ne fagocitirajo. Tako nanodelci ostanejo več časa v krvi in prenesejo zdravila na ciljno mesto (npr. v tumorje). Nanodelci so namreč sposobni prenašati sorazmerno velike količine molekul (npr. zdravil), ki jih vstavimo v njihove pore. Znanstveniki so PCS sintetizirali tako, da so nanodelce prevlekli s posebnimi proteini. Obnašanje tako prevlečenih nanodelcev so opazovali z različnimi poskusi. Ko so mišim vbrizgali različne nanodelce, so ugotovili, da so se v tumorjih najbolj nakopičili tisti s PCS. To je dokazalo hipotezo, da lahko ti nanodelci uspešno prinesejo zdravila v tumorje, ne da bi pri tem prišlo do imunskega odziva, torej fagocitoze delcev. Zato bodo tudi v prihodnje nanodelci s PCS imeli pomembno vlogo pri zdravljenju različnih obolenj, ne le rakavih, saj povečujejo učinkovitost zdravljenja.
Maja Kolar: Pomen velikosti aksonskih mitohondrijev v možganih
Nevroni spadajo med najbolj polarizirane celice v naravi. To jim omogoča oblikovanje različnih lokaliziranih struktur, kot so akson in dendriti. Možgansko skorjo sestavljajo kortikalni nevroni, v katerih se oblike mitohondrijev razlikujejo glede na lokacijo; v dendritih in somi so dolge, cevaste oblike, medtem ko so v izrastkih aksona veliko krajši in kroglasti. Majhnost aksonskih mitohondrijev je povezana predvsem s fizijo oz. binarno cepitvijo, ki poteka prek oligomerizacije Drp1 proteina iz skupine dinaminov zunanji membrani. Ker je Drp1 citoplazemski protein, se z mitohondrijsko zunanjo membrano veže prek 4 različnih receptorjev, nevroznanstveniki Univerze v Columbiji, Lewis in sodelavci, pa so raziskovali predvsem receptor MFF (ang. mitochondrial fission factor), saj je v kortikalnih nevronih najpogostejši. Ekspresijo MFF gena so Lewis in sodelavci zavirali prek uporabe shRNA (ang. short hairpin RNA) ki je umetno izdelan RNA in se uporablja za RNA posege pri zaviranju ekspresije tarčnih genov. Z raziskavo so dokazali, da MFF nima znatnega vpliva na membranski potencial mitohondrijev in na njihovo skupno sposobnost pridelave ATP, je pa z zmanjšanim delovanjem izrazito vplival na povečanje presinaptičnih mitohondrijev. To je povečalo mitohondrijsko sposobnost absorpcije Ca2+ ionov med nevrotransmisijo, kar je vodilo do zmanjšanega presinaptičnega citoplazemskega kopičenja Ca2+. Posledično se je zmanjšalo sproščanje nevrotransmitorjev v sinaptično špranjo, zmanjšala aksonska razvejanost v možganih in oslabila medsebojna povezanost nevronov.