Bioanorganska kemija: Difference between revisions

From Wiki FKKT
Jump to navigationJump to search
Line 20: Line 20:
Številne reakcije v raznovrstnih vedah o življenju vključujejo vodo in kovinske ione, ki so pogosto v katalitskih centrih (tj. aktivnih mestih) encimov, kot so to npr. kovinski proteini. Voda, ki nastopa pri reakcijah, pogosto reagira kot ligand (kovinski akva kompleksi). Primeri encimov hidrolaz so ogljikove anhidraze, kovinske fosfataze in kovinske proteinaze. Bioanorganski kemiki si prizadevajo razumeti in reproducirati vlogo teh kovinskih proteinov.
Številne reakcije v raznovrstnih vedah o življenju vključujejo vodo in kovinske ione, ki so pogosto v katalitskih centrih (tj. aktivnih mestih) encimov, kot so to npr. kovinski proteini. Voda, ki nastopa pri reakcijah, pogosto reagira kot ligand (kovinski akva kompleksi). Primeri encimov hidrolaz so ogljikove anhidraze, kovinske fosfataze in kovinske proteinaze. Bioanorganski kemiki si prizadevajo razumeti in reproducirati vlogo teh kovinskih proteinov.
Pogosti so tudi kovinski proteini, ki so sposobni prenašati elektrone. Lahko jih porazdelimo v tri večje razrede: železo-žveplovi proteini (kot so npr. rubredoksini, ferodoksini  in Rieske protein), modri bakrovi proteini in citokromi. Ti proteini, ki prenašajo elektrone, so komplementarni nekovinskim elektronskim prenašalcem, kot sta npr. nikotinamid adenin dinukleotid (NAD) in flavin adenin dinukleotid (FAD). Tudi dušikov cikel v veliki meri uporablja kovine za medsebojne redoks pretvorbe.
Pogosti so tudi kovinski proteini, ki so sposobni prenašati elektrone. Lahko jih porazdelimo v tri večje razrede: železo-žveplovi proteini (kot so npr. rubredoksini, ferodoksini  in Rieske protein), modri bakrovi proteini in citokromi. Ti proteini, ki prenašajo elektrone, so komplementarni nekovinskim elektronskim prenašalcem, kot sta npr. nikotinamid adenin dinukleotid (NAD) in flavin adenin dinukleotid (FAD). Tudi dušikov cikel v veliki meri uporablja kovine za medsebojne redoks pretvorbe.
''Slika 1:'' 4Fe-4S klastri kot prenašalci elektronov v proteinih [https://upload.wikimedia.org/wikipedia/commons/thumb/6/6b/FdRedox.png/1024px-FdRedox.png]


=== Toksičnost ===
=== Toksičnost ===

Revision as of 12:27, 21 December 2022

Povzeto po Bioinorganic chemistry from Wikipedia, the free encyclopedia: https://en.wikipedia.org/wiki/Bioinorganic_chemistry

Bioanorganska kemija je področje, ki proučuje vlogo kovin v biologiji. Obravnava tako naravne pojave, kot je denimo obnašanje kovinskih proteinov oz. metaloproteinov, kot tudi umetno vnesene kovine, vključno s tistimi, ki niso bistvene v medicini in toksikologiji. Veliko bioloških procesov, kot je recimo dihanje, je odvisnih od molekul, ki jih uvrščamo v področje anorganske kemije. To področje raziskuje tudi anorganske modele oz. mimetike, ki oponašajo obnašanje metaloproteinov.[1]

Kot mešanica biokemije in anorganske kemije je bioanorganska kemija pomembna v pojasnjevanju udeležbe elektron-transfer proteinov, vezave substrata in njegove aktivacije, kemije prenosa atomov in skupin, kot tudi lastnosti kovin v biološki kemiji. Uspešen razvoj interdisciplinarnega dela je ključen za napredek bioanorgaske kemije.[2]

Sestava živih organizmov

Približno 99 % mase sesalcev predstavljajo elementi ogljik, dušik, kalcij, natrij, klor, kalij, vodik, fosfor, kisik in žveplo.[3] Organske spojine (proteini, lipidi in ogljikovi hidrati) večinoma vsebujejo ogljik in dušik, večina kisika in vodika pa je prisotna v obliki vode.[3] Celoten nabor kovin vsebujočih biomolekul v celici proučuje metalomika.

Zgodovina

Paul Ehrlich je uporabljal organoarzene (“arzenike”) za zdravljenje sifilisa, s čimer je pokazal pomembnost kovin oz. polkovin za medicino, ki se je razcvetela z Rosenbergovim odkritjem proti rakavega delovanja cisplatina (cis-PtCl2(NH3)2). Prvi protein, ki jim ga je uspelo kristalizrati, je bila ureaza, za katero se je kasneje izkazalo, da vsebuje nikelj kot aktivno mesto. Vitamin B12, zdravilo za perniciozno anemijo, je kristalografsko predstavila Dorothy Crowfoot Hodgkin. Kristalografsko je dokazala, da makrociklični corrin vsebuje kobalt. Watson-Crickova oblika DNA predstavlja ključno strukturno vlogo polimerov, ki vsebujejo fosfat.

Teme v bioanorganski kemiji

V bioanorganski kemiji je mogoče prepoznati več različnih sistemov. Glavna področja so:

Transport in hramba kovinskih ionov

Raznovrsten nabor transportnih sredstev (npr. ionska črpalka Na+/K+ ATPaza), vakuole, shranjevalni proteini (npr. feritin) in majhne molekule (npr. sideroforji) so zadolženi za uravnavanje koncentracije kovinskih ionov in njihovo biodostopnost v živih organizmih. Ključno je, da mnogo esencialnih kovin ni zlahka dostopnih proteinom v končni fazi zaradi slabe topnosti v vodnih raztopinah oz. deficitarnega celičnega okolja. Organizmi so razvili različne strategije za zbiranje in transport teh elementov, poleg tega tudi omejijo njihovo citotoksičnost.

Encimatika

Številne reakcije v raznovrstnih vedah o življenju vključujejo vodo in kovinske ione, ki so pogosto v katalitskih centrih (tj. aktivnih mestih) encimov, kot so to npr. kovinski proteini. Voda, ki nastopa pri reakcijah, pogosto reagira kot ligand (kovinski akva kompleksi). Primeri encimov hidrolaz so ogljikove anhidraze, kovinske fosfataze in kovinske proteinaze. Bioanorganski kemiki si prizadevajo razumeti in reproducirati vlogo teh kovinskih proteinov. Pogosti so tudi kovinski proteini, ki so sposobni prenašati elektrone. Lahko jih porazdelimo v tri večje razrede: železo-žveplovi proteini (kot so npr. rubredoksini, ferodoksini in Rieske protein), modri bakrovi proteini in citokromi. Ti proteini, ki prenašajo elektrone, so komplementarni nekovinskim elektronskim prenašalcem, kot sta npr. nikotinamid adenin dinukleotid (NAD) in flavin adenin dinukleotid (FAD). Tudi dušikov cikel v veliki meri uporablja kovine za medsebojne redoks pretvorbe.

Slika 1: 4Fe-4S klastri kot prenašalci elektronov v proteinih [1]

Toksičnost

Nekateri kovinski ioni so strupeni za ljudi in mnoge živali. V povezavi s toksičnostjo svinca je bila pregledana bioanorganska kemija svinca.[4]

Transport kisika in aktivacija proteinov

Bioorganokovinska kemija

Kovine v medicini

Kemija okolja

Biomineralizacija

Vrste anorganskih substanc v biologiji

Alkalijske in zemeljsko alkalijske kovine

Prehodne kovine

Spojine glavnih skupin periodnega sistema

Glej tudi

Reference

Literatura

Zunanje povezave