Organokovinska kemija: Difference between revisions
Line 88: | Line 88: | ||
Skoraj vsi procesi, ki vključujejo ogljikov monoksid, temeljijo na katalizatorjih - primeri so opisani kot [[Wikipedia:carbonylation|karbonilacije]].<ref name=Ullmann>{{ Ullmann | author1 = W. Bertleff |author2 = M. Roeper |author3 = X. Sava | title = Carbonylation | doi = 10.1002/14356007.a05_217 }}</ref> Proizvodnja ocetne kisline iz metanola in ogljikovega monoksida je katalizirana preko [[Wikipedia:metal carbonyl complex|kovinskih karbonilnih kompleksov]] v [[Wikipedia:Monsanto process|procesu Monsanto]] in [[Wikipedia:Cativa process|procesu Cativa]]. Večina sintetičnih aldehidov je proizvedenih s [[Wikipedia:hydroformylation|hidroformilacijo]]. T. Večji del sintetičnih alkoholov, vsaj tistih, ki so večji od etanola, se proizvede s [[Wikipedia:hydrogenation|hidrogeniranjem]] aldehidov, pridobljenih s hidroformilacijo. Podobno se [[Wikipedia:Wacker process|Wackerjev postopek]] uporablja pri oksidaciji [[Wikipedia:ethylene|etilena]] v [[Wikipedia:acetaldehyde|acetaldehid]].{{sfn|Leeuwen|2005|p={{pn|date=October 2021}}}} | Skoraj vsi procesi, ki vključujejo ogljikov monoksid, temeljijo na katalizatorjih - primeri so opisani kot [[Wikipedia:carbonylation|karbonilacije]].<ref name=Ullmann>{{ Ullmann | author1 = W. Bertleff |author2 = M. Roeper |author3 = X. Sava | title = Carbonylation | doi = 10.1002/14356007.a05_217 }}</ref> Proizvodnja ocetne kisline iz metanola in ogljikovega monoksida je katalizirana preko [[Wikipedia:metal carbonyl complex|kovinskih karbonilnih kompleksov]] v [[Wikipedia:Monsanto process|procesu Monsanto]] in [[Wikipedia:Cativa process|procesu Cativa]]. Večina sintetičnih aldehidov je proizvedenih s [[Wikipedia:hydroformylation|hidroformilacijo]]. T. Večji del sintetičnih alkoholov, vsaj tistih, ki so večji od etanola, se proizvede s [[Wikipedia:hydrogenation|hidrogeniranjem]] aldehidov, pridobljenih s hidroformilacijo. Podobno se [[Wikipedia:Wacker process|Wackerjev postopek]] uporablja pri oksidaciji [[Wikipedia:ethylene|etilena]] v [[Wikipedia:acetaldehyde|acetaldehid]].{{sfn|Leeuwen|2005|p={{pn|date=October 2021}}}} | ||
[[File:ConstrainedGeomCmpx.png | [[File:ConstrainedGeomCmpx.png|Organotitanov kompleks z omejeno geometrijo je predkatalizator za polimerizacijo olefinov.]] | ||
Večina industrijskih procesov, ki vključujejo polimere pridobljene iz [[Wikipedia:alkene|alkenov]] temelji na organokovinskih katalizatorjih. Polietilen in polipropilen sta pridobljena [[Wikipedia:heterogeneous catalysis|heterogeno]] s katalizo [[Wikipedia:Ziegler–Natta|Ziegler–Natta]] in homogeno, na primer s [[Wikipedia:constrained geometry catalyst|katalizatorji z omejeno geometrijo]].<ref>{{cite journal |last1=Klosin |first1=Jerzy |last2=Fontaine |first2=Philip P. |last3=Figueroa |first3=Ruth |title=Development of Group IV Molecular Catalysts for High Temperature Ethylene-α-Olefin Copolymerization Reactions |journal=Accounts of Chemical Research |date=21 July 2015 |volume=48 |issue=7 |pages=2004–2016 |doi=10.1021/acs.accounts.5b00065 |pmid=26151395 |doi-access=free }}</ref> | Večina industrijskih procesov, ki vključujejo polimere pridobljene iz [[Wikipedia:alkene|alkenov]] temelji na organokovinskih katalizatorjih. Polietilen in polipropilen sta pridobljena [[Wikipedia:heterogeneous catalysis|heterogeno]] s katalizo [[Wikipedia:Ziegler–Natta|Ziegler–Natta]] in homogeno, na primer s [[Wikipedia:constrained geometry catalyst|katalizatorji z omejeno geometrijo]].<ref>{{cite journal |last1=Klosin |first1=Jerzy |last2=Fontaine |first2=Philip P. |last3=Figueroa |first3=Ruth |title=Development of Group IV Molecular Catalysts for High Temperature Ethylene-α-Olefin Copolymerization Reactions |journal=Accounts of Chemical Research |date=21 July 2015 |volume=48 |issue=7 |pages=2004–2016 |doi=10.1021/acs.accounts.5b00065 |pmid=26151395 |doi-access=free }}</ref> | ||
Revision as of 10:45, 3 January 2023
n-Butillitij, organokovinska spojina. Štirje atomi litija (v vijolični barvi) tvorijo tetraeder s štirimi butilnimi skupinami pritrjenimi na ploskve (ogljik je črn, vodik je bel).
Organokovinska kemija se ukvarja s preučevanjem organokovinskih spojin. To so kemijske spojine, ki vsebujejo vsaj eno kemijsko vez med ogljikovim atomom organske spojine in kovino. Ta kovina je lahko alkalijska, zemljoalkalijska ali prehodna, včasih je lahko tudi polkovina (npr. bor, silicij in selen). Template:Sfn<ref name=":0">Template:GoldBookRef</ref> Med organokovinske spojine prav tako spadajo vezi z organskimi fragmenti ali molekulami, vezi z "anorganskim" ogljikom, kot je ogljikov monoksid (kovinski karbonili), cianid ali karbid. Kljub temu, da nekatere sorodne spojine, kot so hidridi prehodnih kovin in kovinsko-fosfinski kompleksi strogo gledano niso nujno organokovinski, so le-ti pogosto vključeni v razprave. Soroden, vendar ločen izraz "kovinoorganska spojina" se nanaša na spojine, ki vsebujejo kovino in nimajo neposrednih vezi kovina-ogljik, vendar vsebujejo organske ligande. Reprezentativni predstavniki tega razreda so kovinski β-diketonati, alkoksidi, dialkilamidi in kovino-fosfinski kompleksi. Področje organokovinske kemije združuje vidike tradicionalne anorganske in organske kemije.Template:Sfn
Organokovinske spojine se široko uporabljajo tako stehiometrično v raziskovalnih in industrijskih kemijskih reakcijah, kot tudi v vlogi katalizatorjev za povečanje hitrosti nekaterih reakcij (npr. pri uporabi homogene katalize), kjer med ciljne molekule spadajo polimeri, farmacevtski izdelki in številne druge vrste praktičnih produktov.
Organokovinske spojine
Organokovinske spojine se razlikujejo po predponi "organo-" (npr. organopaladijeve spojine) in vključujejo vse spojine, ki vsebujejo vez med atomom kovine in atomom ogljika organilne spojine.<ref name=":0" /> Poleg tradicionalnih kovin (alkalijske kovine, zemljoalkalijske kovine, prehodne kovine in po-prehodne kovine) velja, da lantanoidi, aktinoidi, polkovine in elementi, kot so bor, silicij, arzen ter selen, tvorijo organokovinske spojine. <ref name=":0" /> Primeri organokovinskih spojin vključujejo Gilmanove reagente, ki vsebujejo litij in baker, ter Grignardove reagente, ki vsebujejo magnezij. Tetrakarbonil nikelj in ferocen sta primera organokovinskih spojin, ki vsebujeta prehodne kovine. Drugi primeri organokovinskih spojin vključujejo organolitijeve spojine, kot je n-butillitij (n-BuLi), organocinkove spojine, kot je dietilcink (Et2Zn), organokositrove spojine, kot je tributilkositrov hidrid (Bu3SnH), organoborove spojine, kot je trietilboran (Et3B), in organoaluminijeve spojine kot je trimetilaluminij (Me3Al).
Naravni organokovinski kompleks je metilkobalamin (oblika Vitamin B12), ki vsebuje kobalt-metilno vez. O tem kompleksu se skupaj z drugimi biološko pomembnimi kompleksi pogosto razpravlja na področju bioorganokovinske kemije.Template:Sfn
- Ferrocene.svg
Ferocen je arhetipski kompleks organoželeza. Na zraku je stabilna spojina in lahko sublimira.
- Cobaltocene.svg
Kobaltocen je strukturni analog ferocena, vendar je zelo reaktiven na zraku.
- HRh(CO)P3again.png
dišav na osnovi aldehidov.
- Zeise'sSalt.png
Zeisova sol je primer alkenskega kompleksa prehodne kovine.
- Trimethylaluminium-from-xtal-3D-bs-17.png
Trimetilaluminij je organokovinska spojina z mostovno metilno skupino. Uporablja se v industrijski proizvodnji nekaterih alkoholov.
- Dimethylzinc-3D-balls.png
Dimetilcink ima linearno koordinacijo. Je hlapna piroforna tekočina, ki se uporablja pri pripravi polprevodniških filmov.
- Lithium-diphenylcuprate-etherate-dimer-from-xtal-2D-skeletal.png
Litijev difenilkuprat bis(dietil eterat) je primer Gilmanovega reagenta, vrste organobakrovega kompleksa, ki se pogosto uporablja v organski sintezi.
- AdoCbl-ColorCoded.png
Adenozilkobalamin je kofaktor, potreben za več ključnih encimskih reakcij, ki potekajo v človeškem telesu. Je redek primer kovinskega (kobaltovega) alkila v biologiji.
- IronPentacarbonylStructure.png
Železov(0) pentakarbonil je rdeče-oranžna tekočina, pripravljena neposredno iz zmesi fino zdrobljenega železa in plinastega ogljikovega monoksida pod tlakom.
- Tc99 sestamibi 2D structure.svg
Tehnecij[99mTc] sestamibi se uporablja za slikanje srčne mišice v nuklearni medicini.
Razlika od koordinacijskih spojin z organskimi ligandi
Veliko kompleksov vsebuje koordinacijsko vez med kovino in organskimi ligandi. Komplekse, kjer se organski ligand veže na heteroatom kot sta kisik ali dušik, uvrščamo med koordinacijske spojine (npr. heme A in Fe(acac)3). V primeru, da kateri izmed ligandov tvori vez kovina-ogljik (M-C), potem tak kompleks uvrščamo med organokovinske spojine. Čeprav IUPAC uradno še ni definiral terminologije, nekateri kemiki uporabljajo pojem “organokovinski”, da opišejo katerokoli koordinacijsko spojino, ki vsebuje organski ligand, ne glede na odsotnost direktne vezi M-C.<ref>Template:Cite book</ref>
Položaj spojin v katerih ima kanonični anion negativen naboj, ki se porazdeli med (delokaliziran) ogljikov atom in atom, ki je bolj elektronegativen od ogljika (npr. enolati) ), se lahko razlikuje glede na lastnosti anionskega dela, kovinskega iona ali medija. V primeru, da direktna vez ogljik-kovina v spojini ni dokazana, se te spojine ne uvršča med organokovinske.<ref name=":0" /> Kot primer, litijevi enolati pogosto vsebujejo le Li-O vezi in niso organokovinski, medtem ko cinkovi enolati (Reformatsky reagenti) vsebujejo tako Zn-O vezi kot tudi Zn-C vezi in jih, zato uvrščamo med organokovinske.
Struktura in lastnosti
Vez kovina-ogljik v organokovinskih spojinah je močno kovaletna.<ref>Template:Sfn</ref> Za močno elektropozitivne elemente, kot sta litij in natrij, ima ogljikov ligand karbanionski značaj značaj, vendar so prosti ogljikovi anioni zelo redki, takšen primer je cianid cianid.
Večina organokovinskih spojin je trdnih pri sobni temperaturi, vendar so nekateri tekoči (npr.metilciklopentadienil mangan trikarbonil ali celo hlapni ali celo hlapni nikljev tetrakarbonil.<ref>Template:Sfn</ref> Veliko organokovinskih spojin je občutljivih na zrak (reagirajo s kisikom in vlago), zato se z njimi dela v inertni atmosferi.<ref>Template:Sfn</ref> Nekatere organokovinske spojine, kot je trietilaluminij so piroforne, kar pomeni, da pri njih lahko pride do vžiga že ob stiku z zrakom.<ref></ref>
Ideje in tehnike
Tako kot v drugih vejah kemije, je štetje elektronov uporabno tudi za predvidevanje struktur organokovinskih spojin. 18-elektronsko pravilo pomaga pri napovedi stabilnosti organokovinskih kompleksov, npr. kovinskih kabonilov in kovinskih hidridov. Pravilo ima dva reprezentativna modela štetja elektronov, ionski in nevtralni (poznan tudi kot kovalentni) model.<ref> name=":02">Template:Cite book</ref> Vezavnost lahko vpliva na štetje elektronov v kompleksu kovina-ligand.<ref name=":02" /> Vezavnost (η, mala grška črka eta), pove število zaporedno vezanih ligandov na en centralni kovinski ion. <ref name=":02" /> Kot na primer, ferocen, [(η5-C5H5)2Fe], ima dva ciklopentadienilna liganda , ki povzročita vezavnost 5, kjer se pet ogljikovih atomov liganda C5H5veže enako in vsak prispeva en elektron železovemu jedru. Ligandom, ki pri koordinaciji nimajo zaporedno vezanih atomov, se pripiše grško črko kapa, κ.<ref name=":02" /> Primer je kelacija κ2-acetata. Klasifikacija kovalentne vezi identificira tri razrede ligandov X, L, in Z; ki so razvrščeni glede na donorske lastnosti liganda. Veliko organokovinskih spojin ne sledi 18-elektronskemu pravilu. Kovinske atome v organokovinskih spojinah pogosto opišemo z njihovim d-značajem in oksidacijskim stanjem. Ti sklepi so lahko v pomoč pri napovedi reaktivnosti in preferenčne geometrije. Kemijske vezi in reaktivnost v organokovinskih spojinah pogosto opišejo iz perspektive izolobalnega principa.
Veliko tehnik se uporablja za določitev strukture, zgradbe in lastnosti organokovinskih spojin. Rentgenska praškovna difrakcija je predvsem pomembna tehnika, s katero se lahko določi položaj atomov v trdni snovi in dobi podroben opis strukture.<ref> name=":03">Template:Sfn</ref><ref> name=":04">Template:Sfn</ref> Drugi tehniki, kot sta infrardeča spektroskopija in jedrska magnetna resonančna spektroskopija, se pogosto uporabljata za pridobitev struktur in informacij o vezeh v organokovinski spojinah.<ref name=":03" /><ref name=":04" /> UV-Vis spektroskopija je splošna tehnika za pridobitev informacij o elektronski zgradbi organokovinskih spojin. Uporablja se tudi za spremljanje napredka organokovinskih reakcij kot tudi določitve kinetike reakcije.<ref>Template:Sfn</ref> Mehanizme organokovinskih reakcij se lahko preučuje z dinamično NMR spektroskopijo.<ref>Template:Sfn</ref> Ostale uporabne tehnike so še rentgenska absorpcijska spektroskopija,<ref>Template:Cite journal</ref> elektron paramagnetna resonančna spektroskopija, in elementna analiza.<ref>Template:Sfn</ref><ref>Template:Sfn</ref>
Zaradi visoke reaktivnosti ob prisotnosti kisika in vlage, se delo z organokovinskimi spojinami izvaja s tehnikami v inertni atmosferi (odsotnost zraka in kisika). To ponavadi vključuje uporabo laboratorijskih aparatur kot sta suha komora in Schlenkova linija.<ref>Template:Sfn</ref>
Zgodovina
Zgodnji razvoj organokovinske kemije vključuje Louis Claude Cadet-ovo sintezo metil arzenovih spojin povezanih s kakodilom, kompleks platine in etilena<ref>Template:Cite journal</ref> Williama Christopherja Zeisa<ref>Template:Cite journal</ref>, odkritje dietil- in dimetil cinka Edwarda Franklanda, odkritje Ni(CO)4, Template:Sfn Ludwiga Monda in organomagnezijeve spojine Victorja Grignarda. (Čeprav ni vedno priznana kot organokovinska spojina, je leta 1706 prusko modro, kompleks železa in cianida z mešano valenco, prvi pripravil proizvajalec barv Johann Jacob Diesbach kot prvi koordinacijski polimer in sintetični material, ki vsebuje vez kovina-ogljik. Template:Sfn) Številni bogati in raznoliki produkti iz premoga in nafte so vodili do Ziegler–Natta, Fischer–Tropsch, hidroformilacijske katalize, ki uporablja CO, H2 in alkene kot surovine in ligande.
Priznanje organokovinske kemije kot posebno podpodročje je doseglo vrhunec z dodelitvijo Nobelovih nagrad Ernstu Fischerju in Geoffreyu Wilkinsonu za delo na metalocenih. Leta 2005 so si Yves Chauvin, Robert H. Grubbs in Richard R. Schrock razdelili Nobelovo nagrado za kovinsko – katalizirano metatezo olefina.<ref>Template:Cite journal</ref>
Časovnica organokovinske kemije
- 1760 Louis Claude Cadet de Gassicourt preuči črnila na osnovi kobaltovih soli in izolira kakodil iz kobaltovega minerala, ki vsebuje arzen
- 1827 William Christopher Zeise proizvede Zeisovo sol; prvi kompleks platina / olefin
- 1848 Edward Frankland odkrije dietil cink
- 1863 Charles Friedel in James Crafts pripravita organoklorosilane
- 1890 Ludwig Mond odkrije nikljev karbonil
- 1899 Začetek Grignardovih reakcij
- 1899 John Ulric Nef odkrije alkinilacijo z uporabo natrijevih acetilidov.
- 1900 Paul Sabatier dela na hidrogeniranju organskih spojin s kovinskimi katalizatorji. S hidrogeniranjem maščob se prične napredek v prehrambeni industriji, glej margarino
- 1909 Paul Ehrlich predstavi Salvarsan za zdravljenje sifilisa, zgodnjo organokovinsko spojino na osnovi arzena
- 1912 Nobelova nagrada Victor Grignard in Paul Sabatier
- 1930 Henry Gilman dela na litijevih kupratih, glej Gilmanov reagent
- 1951 Walter Hieber prejme nagrado Alfreda Stocka za svoje delo na področju kemije kovinskih karbonilov.
- 1951 Odkritje ferocena
- 1956 Dorothy Crawfoot Hodgkin določi strukturo vitamina B12,prve biomolekule za katero so ugotovili, da vsebuje vez kovina-ogljik, glej kemijo bioorganokovin
- 1963 Nobelova nagrada Karla Zieglerja in Giulia Natta za Ziegler-Natta katalizator
- 1965 Odkritje ciklobutadienželezovega trikarbonila
- 1968 Razvoj Heckove reakcije
- 1973 Nobelova nagrada Geoffreyu Wilkinsonu in Ernstu Ottu Fischerju za sendvič spojine
- 1981 Nobelova nagrada Roaldu Hoffmannu in Kenichi Fukui za oblikovanje Woodward-Hoffmanovih pravil
- 2001 Nobelova nagrada W. S. Knowlesu, R. Noyori in Karlu Barryju Sharplessu za asimetrično hidrogeniranje
- 2005 Nobelova nagrada Yvesu Chauvinu, Robertu Grubbsu in Richardu Schrocku za kovinsko – katalizirano metatezo alkenov
- 2010 Nobelova nagrada Richardu F. Hecku, Ei-ichi Negishi, Akiri Suzuki za cross coupling reakcije (reakcije navzkrižnega spajanja), katalizirane s paladijem
Obseg
Podpodročja organokovinske kemije obsegajo:
- elementi 2. periode: organolitijeva kemija, organoberilijeva kemija, organoborova kemija
- elementi 3. periode: organonatrijeva kemija, organomagnezijeva kemija, organoaluminijeva kemija, organosilicijeva kemija
- elementi 4. periode: organokalcijeva kemija, organoskandijeva kemija, organotitanova kemija, organovanadijeva kemija, organokromova kemija, organomanganova kemija, organoželezova kemija, organokobaltova kemija, organonikljeva kemija, organobakrova kemija, organocinkova kemija, organogalijeva kemija, organogermanijeva kemija, organoarzenova kemija, organoselenova kemija
- elementi 5. periode: organoitrijeva kemija, organocirkonijeva kemija, organoniobijeva kemija, organomolibdenova kemija, organorutenijeva kemija, organorodijeva kemija, organopaladijeva kemija, organosrebrova kemija, organokadmijeva kemija, organoindijeva kemija, organokositrova kemija, organoantimonova kemija, organotelurjeva kemija
- elementi 6. periode: organolantanova kemija, organocerijeva kemija, organotantalova kemija, organorenijeva kemija, organoosmijeva kemija, organoiridijeva kemija, organoplatinska kemija, organozlata kemija, organoživosrebrova kemija, organotalijeva kemija, organosvinčeva kemija, organobizmuntova kemija, organopolonijeva kemija
- elementi 7. periode: organoaktinijeva kemija, organouranova kemija, organoneptunijeva kemija
Industrijske aplikacije
Organokovinske spojine se široko uporabljajo v komercialnih reakcijah, tako kot homogeni katalizatorji kot tudi stehiometrični reagenti. Na primer organolitijeve, organomagnezijeve in organoaluminijeve spojine, ki so zelo bazične in močno reducirajo, se uporabljajo stehiometrično, hkrati pa katalizirajo številne reakcije polimerizacije.Template:Sfn
Skoraj vsi procesi, ki vključujejo ogljikov monoksid, temeljijo na katalizatorjih - primeri so opisani kot karbonilacije.<ref name=Ullmann>Template:Ullmann</ref> Proizvodnja ocetne kisline iz metanola in ogljikovega monoksida je katalizirana preko kovinskih karbonilnih kompleksov v procesu Monsanto in procesu Cativa. Večina sintetičnih aldehidov je proizvedenih s hidroformilacijo. T. Večji del sintetičnih alkoholov, vsaj tistih, ki so večji od etanola, se proizvede s hidrogeniranjem aldehidov, pridobljenih s hidroformilacijo. Podobno se Wackerjev postopek uporablja pri oksidaciji etilena v acetaldehid.Template:Sfn
Organotitanov kompleks z omejeno geometrijo je predkatalizator za polimerizacijo olefinov. Večina industrijskih procesov, ki vključujejo polimere pridobljene iz alkenov temelji na organokovinskih katalizatorjih. Polietilen in polipropilen sta pridobljena heterogeno s katalizo Ziegler–Natta in homogeno, na primer s katalizatorji z omejeno geometrijo.<ref>Template:Cite journal</ref>
Most processes involving hydrogen rely on metal-based catalysts. Whereas bulk hydrogenations (e.g., margarine production) rely on heterogeneous catalysts, for the production of fine chemicals such hydrogenations rely on soluble (homogenous) organometallic complexes or involve organometallic intermediates.<ref name=Rylander>Template:Ullmann</ref> Organometallic complexes allow these hydrogenations to be effected asymmetrically.
Many semiconductors are produced from trimethylgallium, trimethylindium, trimethylaluminium, and trimethylantimony. These volatile compounds are decomposed along with ammonia, arsine, phosphine and related hydrides on a heated substrate via metalorganic vapor phase epitaxy (MOVPE) process in the production of light-emitting diodes (LEDs).
Organokovinske reakcije
Organokovinske spojine so podvržene številnim pomembnim reakcijam:
- asociativna in disociativna substitucija
- oksidativna adicija in reduktivna eliminacija
- transmetilacija
- migracijski vložek (ang. migratory insertion)
- β-hidrid eliminacija
- prenos elektrona
- aktivacija vezi ogljik-ogljik
- ogljikometalacija (ang. carbometalation)
- hidrometalacija (ang. hydrometalation)
- ciklometalacija
- nukleofilna abstrakcija
Organokovinski kompleksi olajšajo sintezo mnogih organskih spojin. Metateza sigma vezi je način tvorjenja novih ogljik-ogljik sigma vezi. Običajno se uporablja pri kompleksih prehodnih kovin leve polovice d-bloka, ki so v svojem najvišjem oksidacijskem stanju.<ref>Template:Cite journal</ref> Uporaba prehodnih kovin, ki so v najvišjih možnih oksidacijskih stanjih prepreči, da potečejo druge reakcije, kot je recimo oksidativna adicija. Poleg metateze sigma vezi, se metateza alkenov oz. olefinska metateza uporablja za tvorbo raznih ogljik-ogljik pi vezi. Nobena od teh metatez ne spremeni oksidacijskega stanja kovine.<ref></ref><ref></ref> Za tvorbo novih ogljik-ogljik vezi se uporabljajo tudi številne druge metode, kot sta beta-hidrid eliminacija in reakcija vstavljanja (ang. insertion reaction).
Kataliza
Organokovinski kompleksi se običajno uporabljajo za katalize. Glavni industrijski procesi vključujejohidrogenacijo, hidrosililacijo, hidrocianacijo, olefinsko metatezo, alkensko polimerizacijo, alkensko oligomerizacijo, hidrokarboksilacijo, karbonilacijo metanola in hidroformilacijo.Template:Sfn Organokovinski intermediati so tudi vključeni v številne heterogene katalize, analogne tem, ki so zgoraj naštete. Prav tako predvidevajo, da so uporabni za Fischer-Tropschev proces.
Organokovinski kompleksi se pogosto uporabljajo pri finih kemijskih sintezah v mikromerilu, posebej v "cross-coupling" reakcijahs<ref>Template:Cite journal</ref> , ki tvorijo vezi ogljik-ogljik, npr. Suzuki-Miyaura spajanje,<ref>Template:Cite journal</ref> Buchwald-Hartwigova aminacija za tvorbo aril aminov iz aril halidov,<ref>Template:Cite journal</ref> and Sonogashira spajanje, itd.
Tveganje za okolje
V okolju najdemo organokovinske spojine, ki so naravne in nevarne za okolje. Nekatere organokovinske spojine v okolju so posledica človeške rabe. To so na primer organosvinčeve in organoživosrebrove spojine, ki so toksične. Tetraetilsvinec je bil pripravljen kot dodatek k bencinu, a se zaradi svinčeve toksičnosti ne uporablja več. Njegov nadomestek so druge organokovinske spojine, kot je npr. ferocen in metilciklopentadienil manganov trikarbonil (MMT).<ref name="Seyferth">Template:Cite journal</ref> Organoarzenova spojina roxarson je sporen dodatek h krmi za živali. Leta 2006 bi se ga naj samo v ZDA proizvedlo približno milijon kilogramov.<ref>Template:Cite journal</ref> Organokositrove spojine so se široko uporabljale v barvah proti obraščanju, ampak so jih zaradi tveganja za okolje prepovedali.<ref>Template:Cite journal</ref>
See also
References
<references/>
Sources
- Template:Cite book
- Template:Cite book
- Template:Cite book
- Template:Cite book
- Template:Cite book
- Template:Cite book
- Template:Cite book
- Template:Cite book
- Template:Cite book
External links
- MIT OpenCourseWare: Organometallic Chemistry
- Rob Toreki's Organometallic HyperTextbook
- web listing of US chemists who specialize in organometallic chemistry
Template:Organometallics Template:BranchesofChemistry Template:ChemicalBondsToCarbon Template:Authority control