BIO2 Povzetki seminarjev 2014: Difference between revisions
Nina Mavec (talk | contribs) |
|||
Line 43: | Line 43: | ||
=== Bine Tršavec: Odkritja o zgradbi in delovanju glutamat dehidrogenaze === | === Bine Tršavec: Odkritja o zgradbi in delovanju glutamat dehidrogenaze === | ||
Glutamat dehidrogenaza (GDH) je eden izmed encimov potrebnih pri metabolizmu aminokislin. Kot nam pove ime, je njegova naloga, da dehidrogenira glutamat, kar vodi do oksidativne deaminacije glutamata v α-ketoglutarat. Brez encima ta reakcija ne bi potekala, ker je sprememba gibbsonove proste energije za reakcijo pozitivna. α-ketoglutarat se potem prenese v Krebsov cikel, kjer se na koncu pretvori v energijo v obliki ATP. Encim je prisoten pri vseh živih bitjih, saj omogoča povezavo med razgradnjo aminokislin in energijskimi potrebami celice. Zaradi različnih potreb po regulaciji obstaja več vrst tega encima. Zaradi njene naloge se glutamat dehidrogenaza pri evkariontih nahaja v mitohondrijih (kjer poteka tudi Krebsov cikel), v manjši količini pa tudi v endoplazmatskem retiklu (kjer se sintetizira). Lokacija v celici je bila dokazana z vezavo GFP-ja. V nekaterih primerih lahko predstavlja kar 10% vseh mitohondrijskih proteinov. Regulacija encima je zelo kompleksna. Nanj delujejo številni alostreični regulatorji, ki z vezavo naredijo mehanske ovire in zmanjšajo njegovo aktivnost. Najnovejše raziskave dokazujejo, da pri tem pomagajo tudi sirtuini. Dolga leta so znanstveniki preučevali natančno zgradbo in delovanje GDH, ter pri tem naleteli na kar nekaj težav. Po 50 letih raziskav tako boljše razumemo pomen in evolucijski razvoj tega pomembnega encima. V mojem seminarju sem se osredotočil na zgradbo in reguliranje encima. | Glutamat dehidrogenaza (GDH) je eden izmed encimov potrebnih pri metabolizmu aminokislin. Kot nam pove ime, je njegova naloga, da dehidrogenira glutamat, kar vodi do oksidativne deaminacije glutamata v α-ketoglutarat. Brez encima ta reakcija ne bi potekala, ker je sprememba gibbsonove proste energije za reakcijo pozitivna. α-ketoglutarat se potem prenese v Krebsov cikel, kjer se na koncu pretvori v energijo v obliki ATP. Encim je prisoten pri vseh živih bitjih, saj omogoča povezavo med razgradnjo aminokislin in energijskimi potrebami celice. Zaradi različnih potreb po regulaciji obstaja več vrst tega encima. Zaradi njene naloge se glutamat dehidrogenaza pri evkariontih nahaja v mitohondrijih (kjer poteka tudi Krebsov cikel), v manjši količini pa tudi v endoplazmatskem retiklu (kjer se sintetizira). Lokacija v celici je bila dokazana z vezavo GFP-ja. V nekaterih primerih lahko predstavlja kar 10% vseh mitohondrijskih proteinov. Regulacija encima je zelo kompleksna. Nanj delujejo številni alostreični regulatorji, ki z vezavo naredijo mehanske ovire in zmanjšajo njegovo aktivnost. Najnovejše raziskave dokazujejo, da pri tem pomagajo tudi sirtuini. Dolga leta so znanstveniki preučevali natančno zgradbo in delovanje GDH, ter pri tem naleteli na kar nekaj težav. Po 50 letih raziskav tako boljše razumemo pomen in evolucijski razvoj tega pomembnega encima. V mojem seminarju sem se osredotočil na zgradbo in reguliranje encima. | ||
=== Nina Mavec: Katabolizem triptofana in rak === | |||
Ker je rak v sodobnem svetu ena izmed bolezni, ki povzročijo največ smrti, se v zadnjem času izvaja vse več raziskav o samih vzrokih in mehanizmih za nastanek te nevarne bolezni v upanju, da bi s pomočjo ugotovitev lahko razvili, nove, boljše metode zdravljenja. Že nekaj časa je znano, da metabolizem triptofana vpliva na rast in maligni razvoj tumorjev, tako da oslabi imunski odziv celice. Pri katabolizmu te esencialne aminokisline je pomembna kinureninska pot, preko katere se katalizira večina triptofana, nastajajo pa razni metaboliti, med katerimi je tudi kinurenin. Obstajajo trije encimi, ki katalizirajo prvo stopnjo te reakcije, to so indolamin 2,3-dioksigenaza (IDO), triptofan 2,3-dioksigenaza (TDO) in indolamin 2,3-dioksigenaza 2 (IDO2). Ob povečanem katabolizmu triptofana v tumorskem tkivu se vzpostavi imunosupresivno okolje, ki tumorjem omogoča, da se izognejo imunskemu odzivu organizma. To se zgodi preko dveh mehanizmov, ki pa oba prispevata k vzpostavitvi take imunosupresije. Zmanjšana količina triptofana preko protein-kinaze GCN2 povzroči apoptozo limfocitov T. Več kinurenina, ki pri katabolizmu triptofana nastaja, pa preko transkripcijskega faktorja AhR povzroči diferenciacijo regulatornih limfocitov T, ki tumorju omogočajo imunsko toleranco. Inhibitorji teh treh encimov, ki omogočajo katabolizem triptofana, so torej privlačno potencialno zdravilo in raziskave v tej smeri že potekajo. |
Revision as of 21:05, 4 November 2014
Biokemija- Povzetki seminarjev 2014/2015
Nazaj na osnovno stran
Tadej Ulčnik: Različna dinamika in aktivnost dveh steroidnih receptorjev na istem promotorju
Transkripcijski faktorji so proteini, ki se specifično vežejo na DNA ter s tem omogočijo vezavo RNA polimeraze. Delujejo kot regulatorji izražanja genov. Primer transkripcijskih faktorjev so jedrni steroidni receptorji. Steroidni receptorji se nahajajo v citosolu in se aktivirajo ob vezavi steroidnih hormonov. Določeni vsebujejo med sabo podobno domeno, s katero se lahko več različnih receptorjev veže na isto zaporedje na promotorju. Še vedno ni znano kaj vse vpliva na potek translacije, tudi sami mehanizmi delovanja ostajajo še skrivnost. Primerjava aktivnosti in dinamike dveh podobnih steroidnih receptorjev, androgenega in glukokortikoidnega, ki imata v celici vlogo transkripcijskih faktorjev, je pokazala, da čeprav sta si receptorja podobna, to ne velja za njuno delovanje. Na promotorju nista bila ves čas prisotna v enaki količini, tudi količina prepisanega gena je bila različna. Ob dodatku inhibitorjev sta ta različno uspešno preprečevala transkripcijo, kar se je poznalo pri številu vezanih polimeraz in pri količini prepisanih mRNA. Za ta konkretni primer je bilo dokazano, da čeprav sta oba receptorja vplivala na izražanje gena, nista delovala na enak način in v enaki meri. Kaj vse je vplivalo na to je težko določiti, tako da to ostaja predmet nadaljnjih raziskav.
Dominik Dekleva: Aktivacija GPCR-jev v povezavi z vodo
Pomanjkljivosti do sedaj znanih metod za preučevanje proteinov, kot sta NMR- spektroskopija in rentgenska difrakcija, se kažejo, med drugim, pri preučevanju različnih proteinov in receptorjev, udeleženih v biosignalnih poti na atomarnem nivoju. Statične strukture nam ne povedo veliko o reorganizaciji vezi in dinamiki spreminjajočih se interakcij v proteinih, ki so ključne pri signalizacijskih poteh v celicah. Z uporabo nove metode, molekularnih dinamičnih (MD) simulacij, za katero stoji precej statistične matematike, lahko modele makromolekul opazujemo na atomarnem nivoju ter v mikrosekundnem časovnem oknu. Uporabnost omenjene metode se je dobro obnesla tudi v primeru švicarskih znanstvenikov iz Ecole Polytechnique Federale de Lausanne, ki so preiskovali vlogo vode pri aktivaciji treh prototipskih GPCR-jev: adenozin A2A R, β2-adrenergični receptor in rodopsin, kar bom povzel v nadaljevanju. Dokazali so, da se z vezavo liganda znotraj sedmih α-vijačnic GPCR vzpostavi urejen vodni tunel, ki močno vpliva na spremembo konformacije proteina GPCR-ja, ki se zgodi zaradi reorganizacije številnih vodikovih vezi v notranjosti proteina GPCR. Ob vezavi liganda na molekulo GPCR se torej ustvari vodni tunel v molekuli, kar omogoča nadaljnjo signalizacijo in ustrezen odziv celice na primarni sporočevalec.
Nuša Kelhar: Soodvisnost oblike membrane in medceličnega sporočanja
Celična membrana ali plazmalema je nekakšen ovoj celice, ki služi predvsem kot selektivna pregrada med celično zunanjostjo in notranjostjo. Sestavljena je iz lipidnega dvosloja in številnih proteinov, ki so povezani z membrano ali so vezani nanjo. Celične membrane se stalno spreminjajo zaradi odcepljanja in zlivanja veziklov ter zaradi interakcij z dinamičnim citoskeletom. Površina in oblika membrane močno vplivata na učinkovitost njene signalne aktivnosti. Ker reakcije pri prenosu signalov vključujejo tudi membranske komponente in vplivajo na citoskeletsko dinamiko, se s tem spreminja oblika membrane in oblika celice. Če poznamo odvisnost signalizacije od teh mehanizmov lahko že iz oblike celice napovemo, kakšne signale je prenesla ali prejela pred kratkim in prepoznamo nekatere znake nepravilnega delovanja signalnih poti, kar je pomembno pri identifikaciji rakavih celic in zdravljenju. Pomembni mehanizmi, s katerimi membrana sodeluje pri sporočanju so redukcija dimenzij, kjer se spremeni prostor gibanja delcev, ukrivljanje zaradi prostorskih gradientov receptorjev, kjer se receptorji združujejo na membranskih izboklinah in nato lateralno prehajajo, in sodelovanje s citoskeletom, ki izbokline stabilizira in omogoča, da delujejo kot nekakšna tipala. Pogledali si bomo tudi primere delovanja nekaterih načinov sporočanja med celicami in reakcije na določene signale, nekaj pa bomo povedali še o tem, kako njihovo nepravilno delovanje vpliva na razvoj rakavih celic.
Luka Lavrič: Glikoliza - Metabolizem v možganih
V svoji seminarski nalogi, sem se osredotočil na metabolizem v možganih. Za osnovni članek, sem si izbral temo, ki preučuje kakšni so vplivi na nevrone in astrocite, živčne celice, ki se nahajajo v možganih. Opisal sem raziskave in odzive astrocitov in nevronov na dušikov oksid, ki so jih izvedli na miših. Zaradi dušikovega oksida pride do zaviranja mitohondričnega dihanja, zaradi katerega nevroni hitro umrejo, medtem, ko astrociti izkoriščajo glikolizo-tipično-generirano ATP za povečanje svoje potencialne mitohondrijske membrane, s čimer postajajo vse bolj odporni na pro-apoptotične dražljaje. Nevroni ne morejo povečati glikolize zaradi pomanjkanja aktivnosti-glikolizne spodbude encima 6-fosfofrukto-2-kinaza / fruktoza 2,6-bisfosfatna izooblika 3 (PFKFB3), ki je pomemben za aktivacijo 6-fosfofrukto-1-kinaze (PFK1), ki je glavni regluator glikolize. V nevronih, se PFKFB3 neprestano razgrajuje preko E3 ubikvitin ligaze, ki spodbuja kompleksne/cyclosome (APC / C) - CDH1. Metabolizem glukoze v nevronih je usmerjen predvsem po poti pentoze-fosfata, ki vodi do regeneracije glutationa, ki je za nas zelo pomemben. Regulacija aktivnosti PFKFB3 s APC/C-CDH1 sistemom proteasoma je pomembna za razumevanje presnove glukoze, bioenergetsko oskrbo in po možnosti odziva na stres v delujočih možganih. Pri nevronih je visoka aktivnost regulatornega sistema APC/C-CDH1 vključena v preusmeritev presnove glukoze v smeri regeneracije reduciranega glutationa.
Primož Tič: Primanjkljaj encima piruvat karboksilaze
Citratni cikel je pomemben člen metabolizma, saj njegovi intermediati vstopajo v mnoge anabolne poti. Zato so vsakršne napake v njegovem delovanju lahko usodne za organizem. Zelo pomemben encim citratnega cikla je piruvat karboksilaza, ki spremeni piruvat v oksaloacetat. Oksaloacetat je pomemben intermediat, saj lahko vstopi npr. v cikel glukoneogeneze in tako prepreči laktatno acidozo, ki je skupni simptom te metabolne okvare. Ker je cilj metabolizma proizvodnja energije v obliki molekul ATP, se celica na moteno delovanje metabolizma odzove s senzornimi proteini AMPK (AMP-activated protein kinase). Proteini spodbudijo katabolne procese, kjer nastajajo molekule ATP in zavirajo neesencialne anabolne procese, kjer se ATP porablja. Obratno deluje protein mTOR (mammalian target of rapamycin), ki spodbuja sintezo maščobnih kislin, proteinov in ogljikovih hidratov. Poznamo tri tipe bolezni: tip A, tip B in tip C. Najhujša oblika je tip B, kjer oseba umre v roku treh mesecev po rojstvu. Zaenkrat se bolezen še ne da zdraviti, jo pa lahko blažimo npr. z anaplerotično dieto. Anaplerotične reackije nadomeščajo intermediate npr. v citratnem ciklu, ko jih je malo. Anaplerotična dieta izkorišča alternativne intermediate, ki lahko zaobidejo nedelujoče encime in poteka metabolizem normalno. Tako se vsaj približno vzpostavi homeostaza celice. Primer takšnega intermediata je triglicerid triheptanoin, ki se lahko vključi v citratni cikel. V prihodnosti bi lahko takšne in podobne okvare zdravili z gensko terapijo.
Naida Hajdarević: Skrivnost metformina končno odkrita?
Metformin je eno najučinkovitejših zdravil za zdravljenje diabetesa tipa 2, saj zmanjša hepatično glukoneogenezo brez povečanja izločanja inzulina, povečanja telesne teže ali tveganja za razvoj hipoglikemije. Kljub temu, da se pacientom z diabetesom tipa 2 predpisuje že več kot pol stoletja, je njegov mehanizem delovanja prava uganka. Raziskav na to temo je malo morje, z vsako so bili znanstveniki korak bližje odkritju skrivnosti metformina. Tako so leta 2000 v eni izmed raziskav prišli do prvega pravega zaključka: terapija z metforminom pri diabetikih zniža stopnjo proizvodnje glukoze preko inhibicije glukoneogeneze. Odgovoru, kako metformin inhibira glukoneogenezo, je bila bližje naslednja skupina raziskovalcev, ki je ugotovila, da je primarno mesto njegovega delovanja preko direktne inhibicije kompleksa I dihalne verige. Tako smo korak za korakom prišli do zadnjih raziskav, ki so mehanizem delovanja metformina razložile še natančneje – pokazale so, da metformin nekompetativno inhibira encim glicerol-3-fosfat dehidrogenazo, kar zmanjša pretvorbo laktata in glicerola ter zmanjša hepatično glukoneogenezo.
Marija Srnko: Fosfofruktokinaza: Posrednik med glikolitičnim pretokom in razvojem tumorja
Rak-bolezen sodobne družbe. V večini primerov se njegova rast prične iz neznanih vzrokov. Neznan dražljaj v telesu sproži spremembe v genih in kot posledica se pojavi nenadzorovana in hitra rast spremenjenih celic. Določen delež obolenj pa je tudi dedno pogojen. Torej se mutacija genov prenaša iz generacije v generacijo. Že samo zdrav življenjski slog pa lahko pripomore k manjšemu tveganju za njegov razvoj. S hitrejšo rastjo oziroma poliferacijo celic pa pride do sprememba v metabolizmu. Bistvena razlika v primerjavi z metabolizmom normalnih celic je povečana potreba po glukozi. Kar bi lahko povezali s povečano potrebo makromolekul, potrebnih za pospešeno rast celic. Dosedanje najučinkovitejše zdravljenje temelji na kemoterapiji. Vendar si znanstveniki prizadevajo odkritje za organizem manj škodljivih snovi in procesov zdravljenja. V dani nalogi sem se posvetila zbiranju podatkov iz raziskav, ki temeljijo na inhibiranju glikoliznih reakcij. Izpostaviti sem žele encime oz reakcija na katerih je bilo do sedaj izvedenih največ poskusov in dejansko pomujajo možnosti za razvoj pacientu prijaznejšega zdravljenja. Zanimalo me je kakšen vpliv bi imela redukcija določenih reakcij na druga tkiva. Nekaj pozornosti pa sem namenila tudi razvoju nanotehnologije, ki bo kljub odkritju mehanizma inhibicije igrala pomembno vlogo pri transportu substratov do prizadetega tkiva.
Vesna Podgrajšek: Mitohondrijski metabolizem je potreben za znotrajcelično rast toxoplasme gondii
Toxoplasma gondii je znotrajcelična pražival in povzroča bolezen toksoplazmozo. Toxoplasma gondii pospešeno raste znotraj gostiteljevih vakuol, kjer se za svojo rast in replikacijo zanaša na gostiteljev ogljik in hranila. Ena izmed oblik parazita je tahizoit, kateri so se sposobni razmnoževati in napadati v vsakršni gostiteljski celici z jedrom. Proučevali in primerjali so metabolno pot ogljika v znotrajcelični in sproščeni oz. zunajcelični stopnji parazita. Ugotovili so, da toxoplasma gondii v znotrajcelični stopnji, aktivno katabolizira gostiteljevo glukozo preko cikla citronske kisline (TCA). Te stopnje tudi katabolizirajo glutamin preko TCA cikla in poti γ-aminobuturične kisline (GABA), ki generira molekule, ki vstopijo v TCA cikel. Mehanizem preoblikovanja piruvata v acetil-CoA še obstaja nepojasnjen, saj jim manjka PDH kompleks, ki povezuje glikolizo s TCA ciklom. Kemiča inhibicija (NaFAc) TCA cikla popolnoma prepreči znotrajcelično replikacijo parazita, kar pomeni da je potrebna popolna aktivnost TCA cikla. Paraziti, ki jim manjka GABA pot, imajo zavrto rast in niso sposobni ohraniti drsno motiliteto pod razmerami, kjer so hranila omejena (npr. zunaj celice), kar nakazuje, da ima GABA funkcijo kratkotrajne rezerve energije. Zatorej ima toxoplasma gondii tahizoiti metabolno fleksebilnost, ki najverjetneje dovoljuje zajedalcem inficiranje različnih tipov celic.
Ernest Šprager: Vloga nekaterih proteinov tankega črevesa pri tvorbi hilomikronov
Z razgradnjo maščob, ki predstavljajo estre glicerola in treh maščobnih kislin, pridobimo do 40 % vse energije. Maščobne kisline se, preden vstopijo v celice tankega črevesa, protonirajo in s tem postanejo nepolarne. Kljub temu, da se jih večina absorbira kar s pasivno difuzijo, membrane celic tankega črevesa vsebuje ogromno proteinov, ki imajo zelo različne funkcije. Nekateri med njimi olajšajo pasivno difuzijo preko ohranjanja kontracijskega gradienta maščobnih kislin, spet drugi uravnavajo število in velikost hilomikronov, s katerimi se maščobe prenesejo iz tankega črevesa v kri. Za nastanek hilomikrona se morajo v lumnu endoplazemskega retikuluma s pomočjo mikrosomalnega triglicerid transfer proteina okoli apolipoproteinskega jedra povezati triacilgliceridi skupaj z fosfolipidi. Celotna pot maščob od njihove absorbcije v tankem črevesu do sprostitve iz hilomikronov je natančno regulirana. Pomembno vlogo ima protein CD36, ki med drugim deluje kot nekakšen senzor, ki sporoča celicam količino maščob v tankem črevesu. Signalizacija deluje tako, da lahko CD36, kadar je povezan k maščobno kislino, fosforilira ostale encime, ti pa nato lahko vplivajo število hilomikronov, njihovo velikost in s tem tudi količino triacilgliceridov. Prav povišana količina triacilgliceridov v krvi je povezana z kardiovaskularnimi boleznimi, odpornostjo na inzulin in debelost, zato je boljše razumevanje sprejema maščob in njihovo pakiranje v hilomikrone pomembno.
Katja Malovrh: Zmanjšanje aktivnosti encimov citratnega cikla s staranjem
Citratni cikel je niz kemijskih reakcij, ki v aerobnih organizmih potekajo v mitohondrijih. Cikel je na prvem mestu reguliran s količino piruvata, pretvorjenega v Acetil-CoA, ki vanj lahko vstopi. V nadaljevanju procesa pa pri regulaciji sodelujejo tudi številni encimi, ki pretvarjajo intermediate iz ene oblike v drugo. Tako striktna regulacija procesa je izrednega pomena, saj bi brez nje lahko prišlo do prekomerne sinteze ATP, kar bi povzročilo velike izgube energije in mnoge zdravju škodljive spremembe. Kako pa se encimi citratnega cikla spreminjajo s staranjem? Raziskovalci so ugotovili, da se škoda, povzročena s strani prostih radikalov, ki nastajajo kot stranski produkti številnih reakcij, s staranjem močno povečuje. Škodljivi radikali povzročajo poškodbe vsepovsod v celici, najobičajnejša tarča pa so mitohondriji. Mitohondrijska DNA, ki prosto plava po matriksu je zaradi nezaščitenosti dovzetna za številne napade radikalov, ki povzročajo mutacije. Pri translaciji tako dobimo napačno zaporedje na mRNA, posledično nastajajo neaktivni oziroma predrugačeni proteini, ki ne opravljajo svojih nalog. V raziskavi, so znanstveniki ugotavljali če se kateri od encimov, vključenih v citratni cikel s staranjem spremeni, kako se spremeni in kakšne škodljive posledice imajo take spremembe za živi organizem. Ugotovili so, da se encimi spremenijo, da to povzroči nepopolno delovanje citratnega cikla in posledično slabšo proizvodnjo intermediatov, ki so za celice vitalnega pomena.
Urška Kašnik: Transport maščobnih kislin skozi človeško placento
Esencialne maščobne kisline in njihovi derivati dolgih verig večkrat nenasičenih maščobnih kislin (20c) kot sta dokosaheksaenoična kislina (DHA) in arahidonska kislina so bistvenega pomena za pravilno rast in razvoj zarodka. Vnos s hrano kot tudi presnova teh maščobnih kislin, ter njihov nadaljnji prenos iz matere na plod so zato pomembni rekviziti za razvoj plodu. Posteljica je ključni organ, prek katerega hranilne snovi, kot so te maščobne kisline, odtekajo iz matere na plod. Celični privzem (cellular uptake) in translokacija dolgih verig maščobnih kislin (LCFAs) v različnih tkivih se doseže s povezavo soobstoječih mehanizmov. Čeprav lahko LCFA vstopi v celico s pasivno difuzijo, nastajajoča poročila kažejo, da je vnos LCFA nadzorovan z membranskimi transportnimi/vezavnimi proteini kot so maščobnokislinska translokaza (FAT/CD36), plazmatski maščobnokislinski povezovalni protein (FABPpm), maščobnokislinski transportni protein (FATP) in znotrajcelični FABPs v številnih tkivih vključno z človeško posteljico. Za z maščobnimi kislinami aktivirane transkripcijske faktorje (PPARs, LXR, RXR in SREBP-1) je bilo pokazano, da regulirajo te maščobnokislinske transportne/povezovalne proteine in funkcije posteljice. Materinske maščobne kisline lahko tako morda same uravnavajo svoj transport skozi posteljico, kakor tudi funkcije posteljice preko z maščobnimi kislinami aktiviranih transkripcijskih faktorjev. V svoji seminarski nalogi sem povzela nedavni razvoj na področju transporta in metabolizma maščobnih kislin posteljice in vlogo regulacije omenjenih proteinov v teh procesih.
Bine Tršavec: Odkritja o zgradbi in delovanju glutamat dehidrogenaze
Glutamat dehidrogenaza (GDH) je eden izmed encimov potrebnih pri metabolizmu aminokislin. Kot nam pove ime, je njegova naloga, da dehidrogenira glutamat, kar vodi do oksidativne deaminacije glutamata v α-ketoglutarat. Brez encima ta reakcija ne bi potekala, ker je sprememba gibbsonove proste energije za reakcijo pozitivna. α-ketoglutarat se potem prenese v Krebsov cikel, kjer se na koncu pretvori v energijo v obliki ATP. Encim je prisoten pri vseh živih bitjih, saj omogoča povezavo med razgradnjo aminokislin in energijskimi potrebami celice. Zaradi različnih potreb po regulaciji obstaja več vrst tega encima. Zaradi njene naloge se glutamat dehidrogenaza pri evkariontih nahaja v mitohondrijih (kjer poteka tudi Krebsov cikel), v manjši količini pa tudi v endoplazmatskem retiklu (kjer se sintetizira). Lokacija v celici je bila dokazana z vezavo GFP-ja. V nekaterih primerih lahko predstavlja kar 10% vseh mitohondrijskih proteinov. Regulacija encima je zelo kompleksna. Nanj delujejo številni alostreični regulatorji, ki z vezavo naredijo mehanske ovire in zmanjšajo njegovo aktivnost. Najnovejše raziskave dokazujejo, da pri tem pomagajo tudi sirtuini. Dolga leta so znanstveniki preučevali natančno zgradbo in delovanje GDH, ter pri tem naleteli na kar nekaj težav. Po 50 letih raziskav tako boljše razumemo pomen in evolucijski razvoj tega pomembnega encima. V mojem seminarju sem se osredotočil na zgradbo in reguliranje encima.
Nina Mavec: Katabolizem triptofana in rak
Ker je rak v sodobnem svetu ena izmed bolezni, ki povzročijo največ smrti, se v zadnjem času izvaja vse več raziskav o samih vzrokih in mehanizmih za nastanek te nevarne bolezni v upanju, da bi s pomočjo ugotovitev lahko razvili, nove, boljše metode zdravljenja. Že nekaj časa je znano, da metabolizem triptofana vpliva na rast in maligni razvoj tumorjev, tako da oslabi imunski odziv celice. Pri katabolizmu te esencialne aminokisline je pomembna kinureninska pot, preko katere se katalizira večina triptofana, nastajajo pa razni metaboliti, med katerimi je tudi kinurenin. Obstajajo trije encimi, ki katalizirajo prvo stopnjo te reakcije, to so indolamin 2,3-dioksigenaza (IDO), triptofan 2,3-dioksigenaza (TDO) in indolamin 2,3-dioksigenaza 2 (IDO2). Ob povečanem katabolizmu triptofana v tumorskem tkivu se vzpostavi imunosupresivno okolje, ki tumorjem omogoča, da se izognejo imunskemu odzivu organizma. To se zgodi preko dveh mehanizmov, ki pa oba prispevata k vzpostavitvi take imunosupresije. Zmanjšana količina triptofana preko protein-kinaze GCN2 povzroči apoptozo limfocitov T. Več kinurenina, ki pri katabolizmu triptofana nastaja, pa preko transkripcijskega faktorja AhR povzroči diferenciacijo regulatornih limfocitov T, ki tumorju omogočajo imunsko toleranco. Inhibitorji teh treh encimov, ki omogočajo katabolizem triptofana, so torej privlačno potencialno zdravilo in raziskave v tej smeri že potekajo.