BIO2 Povzetki seminarjev 2020: Difference between revisions

From Wiki FKKT
Jump to navigationJump to search
No edit summary
Line 47: Line 47:


Glikogen je primarna oblika shranjevanja glukoze, ki je hitra in dostopna oblika energije. Kljub njegovi pomembnosti pa procesi regulacije glikogena še vedno niso popolnoma jasni. Metabolizem glikogena je zelo reguliran, hkrati pa dinamičen. Kako se bo metabolizem glikogena usmeril, je odvisno od mnogih dejavnikov. Zaloge glikogena v skeletnih mišicah so razdeljena na tri območja: podsarkomerno, intermiofibrilarno in intramiofibrilarno. Vsako od teh območij ima drugačno funkcijo v celici in temu primerno vsaka zase regulira sintezo in razgradnjo glikogenskih granul. Vsaka granula glikogena pa je sposobna tudi samostojnega izvajanja regulacije, pri kateri sodelujejo različni proteini. Eden pomembnejših je protein fosfataza 1 (PP1), ki nadzoruje aktivnost ključnih encimov, kot so glikogen sintaza (GS) in glikogen fosforilaza (GP), pri tem pa mu pomaga glikogen tarčni protein (PTG), ki deluje kot ogrodni protein med PP1 in drugimi proteini. Ta proces je reguliran preko kompleksa laforin-malin, ki prekine povezavo med PP1 in PTG. V seminarju so predstavljene naloge in lastnosti glikogena v treh oddelkih znotraj skeletnih mišic. Predstavljen bo vpliv, ki ga imajo našteti proteini na sintezo glikogena, podrobnejši opis naloge, zgradbe proteinov laforina in malina, kako kompleks laforin-malin inhibira glikogen sintezo ter kakšne so posledice nedelovanja tega proteinskega kompleksa.
Glikogen je primarna oblika shranjevanja glukoze, ki je hitra in dostopna oblika energije. Kljub njegovi pomembnosti pa procesi regulacije glikogena še vedno niso popolnoma jasni. Metabolizem glikogena je zelo reguliran, hkrati pa dinamičen. Kako se bo metabolizem glikogena usmeril, je odvisno od mnogih dejavnikov. Zaloge glikogena v skeletnih mišicah so razdeljena na tri območja: podsarkomerno, intermiofibrilarno in intramiofibrilarno. Vsako od teh območij ima drugačno funkcijo v celici in temu primerno vsaka zase regulira sintezo in razgradnjo glikogenskih granul. Vsaka granula glikogena pa je sposobna tudi samostojnega izvajanja regulacije, pri kateri sodelujejo različni proteini. Eden pomembnejših je protein fosfataza 1 (PP1), ki nadzoruje aktivnost ključnih encimov, kot so glikogen sintaza (GS) in glikogen fosforilaza (GP), pri tem pa mu pomaga glikogen tarčni protein (PTG), ki deluje kot ogrodni protein med PP1 in drugimi proteini. Ta proces je reguliran preko kompleksa laforin-malin, ki prekine povezavo med PP1 in PTG. V seminarju so predstavljene naloge in lastnosti glikogena v treh oddelkih znotraj skeletnih mišic. Predstavljen bo vpliv, ki ga imajo našteti proteini na sintezo glikogena, podrobnejši opis naloge, zgradbe proteinov laforina in malina, kako kompleks laforin-malin inhibira glikogen sintezo ter kakšne so posledice nedelovanja tega proteinskega kompleksa.
==Nika Tomsič - Acetil-CoA: glavni metabolit in sekundarni obveščevalec ==
Acetil-CoA je eden glavnih metabolitov. Deluje kot mejna točka med glikolizo in Krebsovim ciklom. Poleg tega so pomembne tudi njegove naloge kot sekundarni obveščevalec. Nadzoruje ključne celične procese, vključno z energetsko presnovo, mitozo in avtofagijo, tako neposredno kot preko regulacije ekspresije genov. Acetil-CoA običajno nastane v mitohondrijskem matriksu iz piruvata ali kot posledica β-oksidacije dolge verige maščobnih kislin. Lahko pa nastane tudi v citosolu z oksidacijo aminokislin, etanola ali z delovanjem acetil-CoA sintetaze, ki združuje dve glavni komponenti: acetil in koencim A. Razmerje med koncentracijama v mitohondrijskem matriksu in v citosolu je vedno enako. Govorimo torej o nekem dinamičnem ravnotežju, ki ga omogočajo številni prenašalci. Mitohondrijska memebrana je sicer neprepustna za acetil-CoA, zato mora najprej zreagirati v drugo obliko, da lahko vstopa ali iztopa iz mitohondrija. V mitohondrij vstopa piruvat s pomočjo citrat – piruvatnih prenašalcev. Tu piruvat dehidrogenazni kompleks katalizira reakcijo v acetil-CoA. Ko pa je v mitohondriju preveč acetil-CoA, se lahko ta prenese v citosol ali jedro v obliki acetilkarnitina preko karnitinskega prenašalca. V citosolu se spet povrne v acetil-CoA in je lahko vir anabolizma maščobnih kislin ali aminokislin, v jedru pa je njegova funkcija acetiliranje histonov. To omogoči prepisovanje genskega materiala. Lahko pa tudi nadaljuje svojo pot v mitohondriju in vstopi v citratni cikel, kjer je prvi korak pretvorba v citrat preko citratnega sinteznega kompleksa.

Revision as of 14:27, 13 November 2020

POVZETKI SEMINARJEV BIOKEMIJA 2020/21

Jan Bregar - Protein retinoblastoma

Protein retinoblastoma (pRb) je eden ključnih proteinov, ki regulirajo celični cikel in njegova inaktivacija lahko povzroči različna bolezenska stanja. Ta protein regulira ključni prehod iz G1 v S fazo celičnega cikla s pomočjo interakcij z družino E2F, ki je vrsta transkripcijskih faktorjev celičnega cikla. Retinoblastoma protein (pRb) nadzoruje tudi izstop celice iz celičnega cikla. Njeno aktivnost regulira več mehanizmov, ki zaznavajo znotraj- in zunajcelične signale, ki blokirajo ali dovoljujejo fosforilacijo. pRb fosforilirajo od ciklina odvisne kinaze (Cdk-ji) in s tem protein Rb bodisi inaktivirajo ali pa rahlo spremenijo njegove lastnosti, protein pa vseeno ohrani svojo funkcijo. Odkrili so tudi, da pRb regulira apoptozo s pomočjo enakih interakcij s transkripcijskimi faktorji E2F. To, da je pRb vpleten pri apoptozi, popolno dopolnjuje pRb kot pomemben določevalec usode celice. Med trajanjem celičenga cikla je pRb inaktiviran, kar povzroči, da je celica bolj občutljiva na apoptotske stimuluse. Regulacijo apoptoze lahko onesposobijo nekateri virusi, ki s svojimi onkoproteini povzročijo napake v delovanju proteina Rb, kar lahko predstavlja tveganje za organizem. pRb – E2F kompleksi imajo pomembno vlogo pri regulaciji transkripcije genov, ki so vključeni v diferenciaciji in razvoju.

Ajda Beltram - Struktura in dinamika signalnih komplekov GPCR

Receptorji sklopljeni z G-proteinom (GPCR) so transmembranski proteini, ki kot odgovor na ligande regulirajo veliko signalnih poti preko heterotrimernih G-proteinov ali pa preko fosforilacije receptorja s kinazo GRK in arestinov. Vendar ti proteini ne obstajajo le v aktivirani ali neaktivirani obliki, pač pa imajo veliko konformacijskih stanj, ki vsaka sproži svojo signalno pot. Mene je zanimala podrobna razlaga konformacijskih sprememb, ki se zgodijo med prenosom signala. Za aktivacijo G-proteinov je potrebna zamenjava GDP z GTP, kjer igra ključno vlogo razcep domen podenote α G-proteina in destabilizacija vezavnega mesta za nukleotid na Ras-domeni podenote α, kar so posledice konformacijskih sprememb, ki jih povzroči vezava na receptor. Različni ligandi, ki se vežejo na receptorje, pa lahko vplivajo tudi na afiniteto G-proteina do GDP. Kompleksi receptor-G-protein, ki nastanejo z vezavo popolnih agonistov, imajo manjšo afiniteto do GDP, kot tisti, ki so nastali z vezavo delnih agonistov. Pri arestinih pa so prav tako prišli do novega spoznanja. Aktivacija arestinov je večinoma prikazana kot proces iz dveh delov in sicer vezave na fosforiliran C-rep receptorja in nato vezave na jedro receptorja, vendar pa so odkrili, da lahko obe vezavi posebej aktivirata arestin. To nakazuje na to, da verjetno obstaja veliko različnih kompleksov arestina in receptorja, ki regulirajo vsak svojo signalno pot.


Anja Moškrič - Presinaptični kalcijevi kanalčki kot specializiran nadzor za sproščanje nevrotransmitorjev

Signalizacija živčnih celic med drugim poteka s prenosom nevrotransmitorjev preko sinaps. Pri kemični sinapsi gre za pretvarjanje električnih impulzov v eksocitotsko sprostitev nevrotransmitorja (npr. glutamat, GABA, epinefrin, norepinefrin). Pri pretvarjanju signala imajo ključno vlogo napetostno uravnavani kalcijevi ionski kanalčki (Cav), v presinaptičnem predelu. Ti, kot odgovor na depolarizacijo nevrona, usmerjajo kalcijeve ione v notranjost celice in posledično sprožijo fuzijo mešička (z nevrotransmitorjem) s presinaptično membrano. Zgrajeni so iz več podenot, od teh je glavna α1, ki tvori poro za pretok ionov. Podenoti α2δ in β pa regulirata lastnosti. Kanalčke glede na obliko glavne podenote klasificiramo v 3 večje skupine: Cav1, Cav2 in Cav3. V večini sinaps so prisotni kanalčki iz družine Cav2. Da eksocitoza lahko poteče hitro in učinkovito, morajo biti Cav locirani znotraj aktivne regije presinaptične membrane, v bližini mesta eksocitoze. Slednjo kalcijevi kanalčki regulirajo preko različnih proteinov. Pomembnejši predstavnik je družina proteinov RIM (z rab3 vezavne molekule). Ti se na kanalček vežejo z RIM vezavnimi proteini (RBP). Z njimi asociira tudi protein munc13, ki je v membrani vezikla in nevrona vezani s proteini SNARE. Ti so mediatorji pri fuziji membran. Delovanje kanalčka inaktivirajo procesi, kot sta od napetosti odvisni mehanizem in od kalcija odvisen mehanizem, ki je povezan s kalmodulinom.


Gregor Strniša - Načini aktivacije GPCR

GPCR, oziroma z G proteinom sklopljeni receptorji, so transmembranski proteini, ki s svojim delovanjem vplivajo na dogajanje v celici. Zaradi vezave liganda na njihovo zunajcelično stran se jim spremeni konformacija in omogoči prenos signala preko različnih signalnih molekul. Signal se preko različnih G proteinov in β-arrestinov prenaša do drugih proteinov v celici. Kmalu po odkritju GPCR se je izkazalo, da vsi ne delujejo po istem principu. Nove raziskovalne metode so omogočile napredek na področju vizualizacije molekul in njihovega sledenja v celici. Tako so znanstveniki prišli do odkritja petih novih metod aktivacije GPCR, ki lažje razložijo delovanje receptorjev. Med seboj so si različne, a se lahko pogosto prekrivajo in dopolnjujejo. GPCR omogočijo več možnosti odgovora na določen ligand in njegovo koncentracijo. Načini aktivacije, predstavljeni v moji seminarski nalogi, so pristranska aktivacija, znotrajcelična aktivacija, dimerizacijska aktivacija, transaktivacija in dvofazna aktivacija. Posamezen receptor navadno deluje na več načinov. Ob posameznem načinu so podani primeri receptorjev in njihovega delovanja. Z razumevanjem načinov njihove aktivacije se odprejo nove možnosti razvoja zdravil, ki bi delovale preko GPCR, ali vplivale na njihove signalne poti.

Nikola Janakievski - Selective Androgen Receptor Modulators

Selective Androgen Receptors Modulators or better known as SARMs, were discovered 30 years ago, as a potential replacement to steroid therapy. SARMs are a type of Selective Receptor Modulators (SRM), compounds which can act both as agonists and antagonists in androgen receptors (ARs) (as a non-steroid replacement), according to the tissue they are in. The main idea behind SARMs, is improving the hormone therapies we have currently, which use synthetic steroids. An ideal SARM could have all the benefits of steroid hormones, without the side effects. The potential benefits and safety of SARMs is yet to be determined, there are numerous ongoing studies for various applications. It is important to have a summary of all these potential application and past examples of studies. In this seminar, we aim to do just that, by comparing all past studies and future potential applications related to SARMs. We conclude that, SARMs are a viable alternative, possibly an improvement to synthetic steroids, although much more research and clinical trials are required for SARMs to become truly applicable.

Vid Dobrovoljc - Medsebojni vpliv signalnih poti na primeru RTK in GPCR signalnih poti

Preučevanje součinkovanja med signalnimi potmi v celici je zelo zanimivo področje, vendar dokaj težko za raziskovanje. S seminarjem sem poizkusil predstaviti sovplivanje inzulinske(RTK) in β-adrenergične (GCPR) poti v srcu. . Inzulin na β-adrenergične (βAR) poti vpliva s fosforilacijo receptorja z različnimi kinazami, na primer protein kinazo A (PKA) G-protein kinazo (GRK2) in celo sam inzulinskim receptorjem (INSR), kar vodi do desenzitacije in včasih tudi internalizacije receptorja z vezavo β-arestina. Drug način vplivanja je z delovanjem na nižje člene v signalni poti, na primer na koncentracijo cAMP s fosfodiesterazami (PDE). Inzulin lahko tudi s pomočjo fosforilacije uporabi β-adrenergično pot za krepitev svojega signala. Zelo pomembna točka obeh signalnih poti je GRK2, ki po naravi deluje inhibirajoče na obe signalni poti, po zadnjih rezultatih pa jo poleg tega inzulin uporablja za še dodatno inhibicijo GPCR poti. Vplivanje βAR poti na inzulinsko pot je manj jasno, vendar kaže, da lahko βAR na sprejem glukoze v odvisnosti od situacije vpliva tako pozitivno kot negativno, dokaj pomembno vlogo pri tem pa ima PKB. Domnevam, da bo v prihodnosti vedno več raziskav na temo povezav med signalnimi potmi, saj bodo razvite nove opazovalne tehnike, poleg tega pa je razumevanje povezav koristno tako pri razvoju novih tehnik zdravljenja, kot pri samem študiju razvoja celične signalizacije

Rebeka Jerina - Kofein kot antagonist adenozinskih receptorjev

Veliko ljudi po svetu pije kavo, čaj ali kokakolo. Vsem naštetim pijačam je skupen kofein, najpogosteje zaužit psihostimulant na svetu. Kofein povzroča veliko učinkov, med katerimi je najbolj znan vpliv na budnost. Zanima me ali vemo kako in zakaj jo povzroči. Kofein je antagonist adenozinskih receptorjev (ARs). Ima podobno strukturo kot adenozin, zato lahko zaseda njegova vezavna mesta. Adenozinski receptorji so izraženi v mnogih tkivih, veliko pa jih najdemo v centralnem živčnem sistemu (CNS). Raziskala sem, da kofein večinoma vpliva na adenozinska receptorja podtipa A1 in A2A. Te dva podtipa adenozinskih receptorjev (ARs) vplivata na regulacijo mnogih fizioloških funkcij kot so spanje, kognicija, motivacija in čustva. Kofein tako z antagonizmom adenozinskih receptorjev (ARs) prepreči signalno kaskado, ki bi spodbudila zaspanost in posledično ohranja budnost. Adenozinski receptorji (ARs) spadajo pod receptorje povezane z G-proteini. Zgradba A1AR in A2AAR se nekoliko razlikuje, zato je tudi mehanizem delovanja teh dveh podtipov nekoliko drugačen. Signalizacija adenozinskih receptorjev (ARs) lahko poteka po več različnih signalnih poteh. Kofein bi zaradi pozitivnih okrepitvenih učinkov, pojava različnih duševnih motenj in pojava negativnih simptomov po prenehanju uživanja lahko prištevali med droge. Raziskave so pokazale, da se z antagonizmom adenozinskih receptorjev da uspešno zdraviti tudi številne bolezni. Glede na učinke in uporabo kofeina bi lahko rekli, da velja za hranilo, zdravilo ali drogo.

Zala Perko - Mehanizmi vezave ligandov in regeneracija fotoreceptorjev očesne mrežnice

Fotoreceptorji v membrani celic očesne mrežnice so značilni predstavniki z G-proteinom sklopljenih receptorjev. Njihova naloga je absorpcija svetlobe določene valovne dolžine in prenos signala preko G-proteina na citoplazemsko stran, kjer poteče veriga encimsko kataliziranih reakcij. Aktiviran fotoreceptor mora v procesu regeneracije ponovno zavzeti neaktivno konformacijo in vezati naravni ligand 11-cis-retinal. Barvni fotoreceptorji jodopsini zahtevajo učinkovit regeneracijski mehanizem, ker morajo stalno procesirati veliko količino svetlobnih signalov. Aktivna konformacija jodopsina razpade veliko hitreje v primerjavi z rodopsinom in tudi sam potek regeneracije je pri jodopsinih hitrejši. Vzrok za to bi lahko bila različna usoda desenzibiliziranih receptorjev. Nedavno so odkrili možnost, da pri regeneraciji jodopsinov pride do preusmeritve signalne poti. Namesto, da se receptor deaktivira preko internalizacije z arestinom, ostane v membrani in veže ligand glede na prehodno konformacijsko stanje v katerem se nahaja. Na različen potek regeneracije jodopsinov bi lahko vplivala tudi vezava druge molekule retinala v alosterično mesto, ki je posledica konformacijskih sprememb. Povezava med interakcijo retinala in njegovih analogov z določenim konformacijskim intermediatom ima pomembno vlogo tudi s terapevtskega vidika, saj GPCR-ji v splošnem predstavljajo terapevtske tarče za zdravljenje mnogih obolenj. Uporaba analogov 11-cis-retinala, kot sta 9CR in 6mr, ki se vežeta v aktivno ali eno od alosteričnih mest, bi lahko predstavljala učinkovit pristop pri zdravljenju prirojenih mutacij v fotoreceptorjih.

Eva Vene - Povezava bolečine z vezavo kapsaicina na TRPV1

Družina TRP kanalčkov pri živalih združuje devet manjših skupin kationskih prenašalcev, ki odločilno vplivajo na pravilno delovanje organizma. Eden od tovrstnih kanalčkov je tudi TRPV1 z angleškim imenom »transient receptor potential vanilloid 1«. Tega najdemo v mnogih organih in organskih sistemih, natančneje pa se v tem seminarju osredotočamo na njegovo vlogo v perifernem živčevju. TRPV1 vsebuje okoli polovica vseh somatskih in visceralnih senzoričnih nevronov, zato je pomemben mediator pri nocicepciji oziroma zaznavanju možno nevarnih stimulov ter njihovim prevodom v akcijskih potencial. Njegovo delovanje, poleg nekaterih drugih dražljajev, lahko vzbudi organska molekula, imenovana kapsaicin. Slednjega najdemo v sadežih rastlin rodu Capsicum in ga pojmujemo kot eno odločilnih molekul za pekoč okus teh plodov. Ob vezavi kapsaicina na TRPV1 v celico vdrejo kationi, ki spodbudijo različne celične procese, ključne za oblikovanje in prenos živčnega signala do možganov ter pojav vnetja. Posebej zanimive so dvolične posledice vezave kapsaicina, ki sicer vodijo do bolečine, draženja in vnetja, a omogočijo tudi refrakcijsko dobo kanalčka, ki predstavlja čas, ko slednjega ne moremo aktivirati ter desenzitacijo in degradacijo živčnih vlaken, kar povezujemo z analgetičnim učinkom te molekule. Ob redni daljši izpostavitvi kapsaicinu, ki ga lahko administriramo transdermalno ali injiciramo, se tako uspešno uporablja pri lajšanju kroničnih bolečin.

Erik Putar - AMPK: senzor glukoze ter celičnega energijskega stanja

Celica uporablja z AMP aktivirano protein kinazo (AMPK) kot senzor celičnega energijskega stanja in glukoze. Njen glavni aktivator je AMP, ki promovira fosforilacijo Thr172 na AMPK, inhibira defosforilacijo fosforiliranega Thr172 ter alosterično aktivira AMPK. Aktivacija AMPK poteče že ob majhem energijskem deficitu in sproži regulatorni odgovor, ki preusmeri celični metabolizem iz anabolizma v katabolizem. Fosforilacija Thr172 poteče preko kinaze LKB1, medtem ko sta glikogen sintaza in acetil koencim A karboksilaza (ACC) dve tarči izmed mnogih kinazne aktivnosti AMPK. AMPK je heterotrimer sestavljen iz podenot α, β in γ. V α podenoti je prisotno kinazno aktivno mesto ter Thr172, medtem ko so na γ podenoti prisotna vezavna mesta za adenin nukleotide. β podenota je miristilirana na svojem N koncu, kar je ključnega pomena za delovanje glukoznega senzorja. Ta mehanizem poteka na lizosomih in sicer s tvorbo velikega kompleksa, ki vsebuje aldolazo, v-ATPazo, Ragulator, AXIN, LKB1 ter AMPK. Aldolaza je sicer tista, ki čuti prisotnost glukoze in to preko fruktoze 1,6-bisfosfata (FBP): odsotnost FBP v njenem aktivnem mestu aktivira AMPK neodvisno od razmerja koncentracijah adenin nukleotidov in tako preusmeri celico iz glikolitične v alternativne oksidativne poti.

Timotej Sotošek - Regulacija mišičnega glikogena: granule in njeni proteini

Glikogen je primarna oblika shranjevanja glukoze, ki je hitra in dostopna oblika energije. Kljub njegovi pomembnosti pa procesi regulacije glikogena še vedno niso popolnoma jasni. Metabolizem glikogena je zelo reguliran, hkrati pa dinamičen. Kako se bo metabolizem glikogena usmeril, je odvisno od mnogih dejavnikov. Zaloge glikogena v skeletnih mišicah so razdeljena na tri območja: podsarkomerno, intermiofibrilarno in intramiofibrilarno. Vsako od teh območij ima drugačno funkcijo v celici in temu primerno vsaka zase regulira sintezo in razgradnjo glikogenskih granul. Vsaka granula glikogena pa je sposobna tudi samostojnega izvajanja regulacije, pri kateri sodelujejo različni proteini. Eden pomembnejših je protein fosfataza 1 (PP1), ki nadzoruje aktivnost ključnih encimov, kot so glikogen sintaza (GS) in glikogen fosforilaza (GP), pri tem pa mu pomaga glikogen tarčni protein (PTG), ki deluje kot ogrodni protein med PP1 in drugimi proteini. Ta proces je reguliran preko kompleksa laforin-malin, ki prekine povezavo med PP1 in PTG. V seminarju so predstavljene naloge in lastnosti glikogena v treh oddelkih znotraj skeletnih mišic. Predstavljen bo vpliv, ki ga imajo našteti proteini na sintezo glikogena, podrobnejši opis naloge, zgradbe proteinov laforina in malina, kako kompleks laforin-malin inhibira glikogen sintezo ter kakšne so posledice nedelovanja tega proteinskega kompleksa.

Nika Tomsič - Acetil-CoA: glavni metabolit in sekundarni obveščevalec

Acetil-CoA je eden glavnih metabolitov. Deluje kot mejna točka med glikolizo in Krebsovim ciklom. Poleg tega so pomembne tudi njegove naloge kot sekundarni obveščevalec. Nadzoruje ključne celične procese, vključno z energetsko presnovo, mitozo in avtofagijo, tako neposredno kot preko regulacije ekspresije genov. Acetil-CoA običajno nastane v mitohondrijskem matriksu iz piruvata ali kot posledica β-oksidacije dolge verige maščobnih kislin. Lahko pa nastane tudi v citosolu z oksidacijo aminokislin, etanola ali z delovanjem acetil-CoA sintetaze, ki združuje dve glavni komponenti: acetil in koencim A. Razmerje med koncentracijama v mitohondrijskem matriksu in v citosolu je vedno enako. Govorimo torej o nekem dinamičnem ravnotežju, ki ga omogočajo številni prenašalci. Mitohondrijska memebrana je sicer neprepustna za acetil-CoA, zato mora najprej zreagirati v drugo obliko, da lahko vstopa ali iztopa iz mitohondrija. V mitohondrij vstopa piruvat s pomočjo citrat – piruvatnih prenašalcev. Tu piruvat dehidrogenazni kompleks katalizira reakcijo v acetil-CoA. Ko pa je v mitohondriju preveč acetil-CoA, se lahko ta prenese v citosol ali jedro v obliki acetilkarnitina preko karnitinskega prenašalca. V citosolu se spet povrne v acetil-CoA in je lahko vir anabolizma maščobnih kislin ali aminokislin, v jedru pa je njegova funkcija acetiliranje histonov. To omogoči prepisovanje genskega materiala. Lahko pa tudi nadaljuje svojo pot v mitohondriju in vstopi v citratni cikel, kjer je prvi korak pretvorba v citrat preko citratnega sinteznega kompleksa.