Ferocen: Difference between revisions
No edit summary |
No edit summary |
||
Line 35: | Line 35: | ||
Na vsakem obroču se nahaja 6 π-elektronov, kar pomeni, da so ti,Hückel-ovem pravilu, aromatski. Teh 12 π-elektronov se prenaša med kovino in obroči prek kovalentne vezi. Ker ima Fe<sup>2+</sup> 6 d-elektronov, ima kompleks 18-elektronsko konfiguracijo, kar poveča njegovo stabilnost. V moderni notaciji prikažemo strukturni model ferocena kot Fe(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>. | Na vsakem obroču se nahaja 6 π-elektronov, kar pomeni, da so ti,Hückel-ovem pravilu, aromatski. Teh 12 π-elektronov se prenaša med kovino in obroči prek kovalentne vezi. Ker ima Fe<sup>2+</sup> 6 d-elektronov, ima kompleks 18-elektronsko konfiguracijo, kar poveča njegovo stabilnost. V moderni notaciji prikažemo strukturni model ferocena kot Fe(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>. | ||
Dolžine vseh C-C vezi vsakega petčlenskega obroča znašajo 1.40 Å, dolžine vezi Fe–C pa znašajo 2.04 Å. V območju od sobne temperature do 164K rentgenska kristalografija pokaže monoklinski kristalni sistem; ciklopentadienidni obroči imajo ‘staggered’ konformacijo, kar vodi v centrosimetrično molekulo s točkovno skupino D<sub>5d</sub>.<sup>[19]</sup> Pod 110 K ferocen kristalizira kot ortorombska kristalna mreža, v kateri so obroči ciklopentadienila urejeni in zasenčeni tako, da ima molekula točkovno skupino D<sub>5h</sub>. <sup>[29]</sup> V plinasti fazi nam elektronska difrakcija<sup>[30]</sup> in računske metode<sup>[31]</sup> pokažejo, da so obroči ciklopentadienila zasenčeni. | |||
Ciklopendatienilski obroči se rotirajo okoli Cp<sub>centroid</sub>–Fe–Cp<sub>centroid</sub> osi, kar nam kažejo meritve na substituiranih derivatih ferocena z uporabo <sup>1</sup>H and <sup>13</sup>C NMR spektroskopije. Kot primer metilferocen(CH<sub>3</ | Ciklopendatienilski obroči se rotirajo okoli Cp<sub>centroid</sub>–Fe–Cp<sub>centroid</sub> osi, kar nam kažejo meritve na substituiranih derivatih ferocena z uporabo <sup>1</sup>H and <sup>13</sup>C NMR spektroskopije. Kot primer metilferocen(CH<sub>3</sub>C<sub>5</sub>H<sub>4</sub>FeC<sub>5</sub>H<sub>5</sub>) kaže singlet za C<sub>5</sub>H<sub>5</sub> obroč.<sup>[32]</sup> | ||
== Sinteza == | == Sinteza == |
Revision as of 12:21, 7 January 2023
Ferocen je organokovinska spojina s formulo Fe(C5H5)2. Struktura molekule je kompleks, ki je sestavljen iz dveh ciklopentadienilnih obročev vezanih na centralni železov atom. Spojina je oranžna trdna snov, ki ima vonj po kafri. Spojina sublimira nad sobno temperaturo in se topi v večini organskih topil. Spojina je znana po njeni izjemni stabilnosti. Ni občutljiva na vodo, zrak, močne baze, in je termično stabilna do 400 °C, brez razpada kompleksa. V oksidativnih pogojih lahko reverzibilno reagira z močnimi kislinami, da tvori ferocenijev kation Fe(C5H5)+2.[8] Odkritju ferocena pogosto pripisujejo zasluge za hiter razvoj organokovinske kemije.
Zgodovina
Odkritje
Ferocen je bil nepričakovano odkrit trikrat v svoji zgodovini. Prva znana sinteza je morda bila izvedena okoli leta 1940, ko so raziskovalci podjetja “Union Carbide” skušali poslati hlape ciklopentadiena skozi železno cev. Hlapi so reagirali s steno cevi, kar je ustvarilo “rumeno sluz”, ki je cev zamašila. Leta kasneje je shranjen vzorec sluzi pridobil in analiziral E. Brimm, nedolgo zatem, ko je prebral Kealy in Pausonov članek. Odkril je, da je vzorec vseboval ferocen. [8] [9]
Druga sinteza je bila okoli leta 1950, ko so S. Miller, J. Tebboth in J. Tremaine, raziskovalci podjetja “British Oxygen”, skušali sintetizirati amine iz ogljikovodikov in dušika, z uporabo modificiranega Haber procesa. Ko so skušali reagirati ciklopentadien z dušikom pri 300 °C in atmosferskem tlaku, so opazili, da je ogljikovodik reagiral z virom železa, kar je vodilo do tvorbe ferocena. Čeprav so opazili, da ima nastala spojina izjemno dobro stabilnost, so opažanja dali na stran in jih objavili šele zatem, ko je Pauson objavil svoja odkritja. [8] [10] [11] Kealy in Pauson sta celo od Millerja in ostalih raziskovalcev “British Oxygen” pridobila vzorec, s katerim sta potrdila, da gre za isto spojino.
Leta 1951 sta Peter L. Pauson in Thomas J. Kealy, iz Univerze Duquesne v Pittsburgh, Pensilvaniji, poskušala pripraviti fulvalen ((C5H4)2), z oksidativno dimerizacijo ciklopentadiena (C5H6). V procesu sta zreagirala Grginardov reagent ciklopentadienil magnezijev bromid in dietil eter, z železovim kloridom, ki je imel vlogo oksidanta. Namesto pričakovanega fulvalena sta pridobila oranžen prah z “izjemno stabilnostjo”. Formula prahu je bila C10H10Fe. [9] [12]
Določevanje strukture
Pauson in Kealy sta ugibala, da je spojina imela dve ciklopentadienilni skupini, vsaka z eno enojno kovalentno vezjo iz nasičenega ogljikovega atoma na atom železa.[8] Predlagana struktura je bila neskladna z veznimi modeli in ni razložila nepričakovane stabilnosti spojine. Kemiki so imeli težave z ugotavljanjem pravilne strukture.[11] [13] Strukturo so neodvisno določile in objavile tri skupine, leta 1952:[14]
Woodward in Wilkins sta jo določila ob opažanju, da je ferocen sodeloval v reakcijah, ki so značilne za aromatske spojine, kot je benzen[15]
E. Fischer je določil strukturo(poimenoval jo je “dvojni stožec”) in sintetiziral še druge metalocene, kot sta niklocen in kobaltocen [16] [17] [18]
P. F. Eiland in R. Pepinsky sta potrdila strukturo z rentgensko kristalografijo in kasneje z NMR analizo.[11] [19] [20] [21]
Razumevanje strukture
“Sendvič” struktura ferocena je bila osupljivo odkritje in je za njeno razlago potrebovala nove teorije. Uporaba teorije molekulskih orbital, ob predpostavki, da se med dvema ciklopentadienilnima anionoma(C5H5)- nahaja Fe2+ kovinski center, je vodila do uspešnega Dewar-Chatt-Duncanson modela, ki pa je omogočil pravilni napoved geometrije molekule in obrazložil njeno izjemno stabilnost.[22] [23]
Vpliv
Ferocen ni bila prva odkrita organokovinska spojina. Zeisova sol K[PtCl3(C2H4)]·H2O je bila odkrita leta 1831,[24][25] Mond je Ni(CO)4 odkril leta 1888[26] in organolitijeve spojine pa so bile razvite leta 1930.[27] Kljub temu pa je je odkritje ferocena nedvomno vodilo do obravnavanja organokovinske kemije, kot ločeno vejo kemije, hkrati pa je vodilo je tudi do povečanega interesa za spojine kovin d-bloka z ogljikovodiki.
Odkritje strukture je bilo tako pomembno, da sta Wilkinson in Fischer, leta 1973, prejela Nobelovo nagrado za kemijo za njuno delo z organokovinsko kemijo in “sendvič” spojinami.[28]
Zgradba in vezava
Mössbauerjeva spektroskopija kaže na to, da naj bi železov ion v ferocenu imel oksidacijsko stanje +2. Vsak ciklopentadienilski obroč ima tako naboj 1-. Ferocen se zato lahko opiše kot železov (II) bis(ciklopentadienid), Fe2+[C5H-5]2 Na vsakem obroču se nahaja 6 π-elektronov, kar pomeni, da so ti,Hückel-ovem pravilu, aromatski. Teh 12 π-elektronov se prenaša med kovino in obroči prek kovalentne vezi. Ker ima Fe2+ 6 d-elektronov, ima kompleks 18-elektronsko konfiguracijo, kar poveča njegovo stabilnost. V moderni notaciji prikažemo strukturni model ferocena kot Fe(η5-C5H5)2.
Dolžine vseh C-C vezi vsakega petčlenskega obroča znašajo 1.40 Å, dolžine vezi Fe–C pa znašajo 2.04 Å. V območju od sobne temperature do 164K rentgenska kristalografija pokaže monoklinski kristalni sistem; ciklopentadienidni obroči imajo ‘staggered’ konformacijo, kar vodi v centrosimetrično molekulo s točkovno skupino D5d.[19] Pod 110 K ferocen kristalizira kot ortorombska kristalna mreža, v kateri so obroči ciklopentadienila urejeni in zasenčeni tako, da ima molekula točkovno skupino D5h. [29] V plinasti fazi nam elektronska difrakcija[30] in računske metode[31] pokažejo, da so obroči ciklopentadienila zasenčeni.
Ciklopendatienilski obroči se rotirajo okoli Cpcentroid–Fe–Cpcentroid osi, kar nam kažejo meritve na substituiranih derivatih ferocena z uporabo 1H and 13C NMR spektroskopije. Kot primer metilferocen(CH3C5H4FeC5H5) kaže singlet za C5H5 obroč.[32]
Sinteza
Industrijska sinteza
Industrijsko se ferocen sintetizira z reakcijo železovega(II)etoksida s ciklopentadienom;[33] železov(II)etoksid se pridobi z elektrokemijsko oksidacijo kovinskega železa v brezvodnem etanolu. Pri tej reakciji kot stranski produkt nastane etanol, ki sodeluje v sintezi kot katalizator. Celokupna reakcija je: Fe + 2C5H6 → H2 + Fe(C5H6)2.
Preko Grignard-ovega reagenta
Prve sinteze ferocena so bile objavljene istočasno. Pauson in Kealy sta sintetizirala ferocene z uporabo železovega(III)klorida in Grignard-ovega reagena (ciklopentadienil magnezijev bromid). Železov(III)klorid se vnese v brezvodni dietil eter in se ga doda Grignard-ovemu reagent.[12] Poteče redoks reakcija, pri kateri nastane ciklopentadienilski radikal in železovi(II) ioni. Dihidrofulvalen nastane z radikalso rekombinacijo, ko železo(II) reagira z Grignardovim reagentom, da nastane ferocen. Oksidacija dihidrofulvalena v fulvalen z železom(III) ne poteče.[9]
Plin-kovinska reakcija
Drugo sintezo ferocena je izvedel Miller et al[10], ki je kovinsko železo reagiral z ciklopentadienom v plinski fazi pri povišani temperaturi.[34] Objavljen je bil tudi poskus sinteze z uporabo železovega pentakarbonila.
Fe(CO)5 + 2 C5H6(g) → Fe(C5H5)2 + 5 CO(g) + H2(g)