BIO2 Povzetki seminarjev: Difference between revisions

From Wiki FKKT
Jump to navigationJump to search
Line 68: Line 68:
Botulin (BoNT)[http://www.ebi.ac.uk/biomodels/ModelMonth/August2010/fig1.png] je eden najbolj smrtonosnih naravnih strupov. BoNT (150kDa), ki ga proizvajajo anaerobne bakterije ''Clostridium botulinum'' [http://www.millennium-ark.net/NEWS/08_Health/08_Health_pics/081201.clostridium.jpg], je zgrajen iz dveh polipeptidnih verig, lahke in težke, ki sta med seboj povezani z disulfidnim mostom. Je nevrotoksin, zavira sproščanje acetilholina v živčnomišičnih stikih in povzroči botulizem oz. mišično ohromelost. Sposobnost botulina za prekinjanje živčnega prenosa so v preteklosti izkoriščali v različne namene, npr. za zdravljenje očesnih obolenj. Danes je njegova uporaba močno razširjena, najdemo ga v botoksu, kot tudi pri zdravljenju aksilarne hiperhidroze (prekomerno potenje pod pazduhami).
Botulin (BoNT)[http://www.ebi.ac.uk/biomodels/ModelMonth/August2010/fig1.png] je eden najbolj smrtonosnih naravnih strupov. BoNT (150kDa), ki ga proizvajajo anaerobne bakterije ''Clostridium botulinum'' [http://www.millennium-ark.net/NEWS/08_Health/08_Health_pics/081201.clostridium.jpg], je zgrajen iz dveh polipeptidnih verig, lahke in težke, ki sta med seboj povezani z disulfidnim mostom. Je nevrotoksin, zavira sproščanje acetilholina v živčnomišičnih stikih in povzroči botulizem oz. mišično ohromelost. Sposobnost botulina za prekinjanje živčnega prenosa so v preteklosti izkoriščali v različne namene, npr. za zdravljenje očesnih obolenj. Danes je njegova uporaba močno razširjena, najdemo ga v botoksu, kot tudi pri zdravljenju aksilarne hiperhidroze (prekomerno potenje pod pazduhami).


Tetanus nevrotoksin (TeNT)[http://www.rcsb.org/pdb/images/1fv3_bio_r_500.jpg?bioNum=2] proizvajajo anaerobne bakterije ''''Clostridium tetani'' [http://www.humanillnesses.com/original/images/hdc_0001_0003_0_img0264.jpg]. Po zgradbi je podoben BonT, prav tako tudi po funkciji, tudi TeNT je nevrotoksin, ki inhibira sproščanje acetilholina. To privede do tetanusa, za katerega so značilni močni mišični krči.
Tetanus nevrotoksin (TeNT)[http://www.rcsb.org/pdb/images/1fv3_bio_r_500.jpg?bioNum=2] proizvajajo anaerobne bakterije ''Clostridium tetani'' [http://www.humanillnesses.com/original/images/hdc_0001_0003_0_img0264.jpg]. Po zgradbi je podoben BonT, prav tako tudi po funkciji, tudi TeNT je nevrotoksin, ki inhibira sproščanje acetilholina. To privede do tetanusa, za katerega so značilni močni mišični krči.


Oba toksina uvrščamo med klostridijske toksine (CNT), saj prihajata iz istega rodu. Mehanizem delovanja obeh nevrotoksinov je podoben le, da BoNT deluje na motornevrone, medtem ko TeNT na različne tipe nevronov.
Oba toksina uvrščamo med klostridijske toksine (CNT), saj prihajata iz istega rodu. Mehanizem delovanja obeh nevrotoksinov je podoben le, da BoNT deluje na motornevrone, medtem ko TeNT na različne tipe nevronov.

Revision as of 13:35, 29 October 2010

Đorđe Dimitrijević: PLC regulacija: nastajajoči modeli molekularnih mehanizmov

Fosfoinozitol specifične fosfolipaze C so pogoste signalne komponente povezane z aktivacijo večina celičnih receptorjev.

Družine PLC so kompleksni, večdomenski proteini in skupaj pokrivajo širok spekter regulatornih interakcij, zajemajoč direktno vezavo na podenote G proteinov, majhne GTPaze iz Rho in Ras družin, receptorne in ne-receptorne tirozin- kinaze in lipidne komponente celičnih membran.

Nedavne strukturne določitve PLC komponent in njihovih kompleksov z regulatornimi proteini in direktne mehanistične študije, s prejšnjimi deli, so zagotovile temelje za predloge molekularnih mehanizmov, ki strogo regulirajo PLC aktivnost.

PLC encimi najdeni v evkariontih sestavljajo sorodno skupino proteinov, ki cepijo polarno skupino glavo fosfatidilinozitola 4,5 bisfostata ( PtdIns( 4,5)P2 )[1,2].

Najbolje dokumentirana posledica te reakcije in prvenstven celični signalni odziv je nastanek dveh sekundarnih obveščevalcev :

Inozitol 1,4,5-trifosfat ( Ins(1,4,5)P3), univerzalen kalcij-mobiliziran sekundaren obveščevalec, in diacilglicerol( DAG), aktivator več tipov efektorskih proteinov vključno z izooblikami protein- kinaz C.

Ti sekundarni obveščevalci zagotovijo skupen člen, od visoko specifičnih receptorjev za hormone, nevrotransmiterje, antigene, komponent zunajceličnega matriksa in rastnih faktorjev,do navzdol intracelularnih(znotrajceličnih) tarč.

S tem načinom prispevajo k regulaciji raznovrstnih bioloških funkcij kot so celično gibanje, fertilizacija in senzorna transdukcija.

Ena izmed pomembnih vlog različnih fosfoinozitidnih vrst je v usmerjanju proteina k posebnim sub-celičnim razdelkom za pomemben nadzor membranskega razvrščanja in celičnega gibanja.[3-5]

Povezava do originalnega članka

Aleksander Krajnc: Oligomerske oblike z G proteinom sklopljenih receptorjev (GPCR)

Oligomerizacija je poglavitna lastnost receptorjev na celični membrani, ki velja tudi za z G proteinom sklopljene receptorje (GPCR-je). GPCR-je so dolgo smatrali za monomerne enote. Kljub intenzivnim preučevanjem, razumevanje molekularnih funkcij in struktur še vedno ni čisto raziskano. Kot se je dokaz za združevanje receptorjev razvil iz eksperimentalnih celičnih linij v pomembne in vivo študije izoliranih kompleksov dimernega receptorja ter le-tega sklopljenega skupaj z G proteinom, je pričakovati, da bodo tudi strukturne osnove in funkcije oligomerizacije pri membranskem sporočanju kmalu pojasnjene. Kooperativna interakcija takšnih skupkov GPCR-jev pomembno vpliva na razširjanje signala skozi celično membrano in naprej do G proteinov. Obstoj oligomerizacije celičnih membranskih receptorjev je v celoti podkrepljena s termodinamskimi izračuni in izračuni za trajanje signala, da doseže različne kompartmente celice.

Model GPCR-ja obarvan po entropiji

Predvidevana oligomerizacija mesta GPCR-jev razreda B

Vito Frančič: Proteini WD40: središča v omrežju celičnih biokemijskih interakcij

Domene WD40 so beta propelerji, ki so večinoma sestavljeni iz sedmih WD ponovitev. Te ponovitve so kratki strukturni motivi sestavljeni iz približno 40 aminokislin in se pogosto končajo z dipeptidom triptofan-asparaginska kislina (W-D). Proteini, ki vsebujejo domene WD40, so velika družina in jih najdemo v vseh evkariontih. Njihove pomembne lastnosti so, da nimajo sposobnosti katalize, da večinoma opravljajo vlogo platform, na katerih se sestavljajo proteinski kompleksi, in da so močno zastopani v dosedaj raziskanih evkariontskih proteomih. Sodelujejo v mnogih pomembnih procesih, ki so nujni za preživetje celice, recimo signalna transdukcija, delitev celice, spremembe citoskeleta, kemotaksa, procesiranje RNA, … Domene WD40 so sposobne interagirati z mnogo različnimi tipi molekul in so zelo prilagodljive. Vse te lastnosti domen WD40 so najbolje razvidne iz primerov proteinov, ki vsebujejo te domene. Kompleks PRC2 (njegovi najbolj raziskani podenoti sta EED in RbAp46/48) igra pomembno vlogo pri utišanju gena Polycomb; proteini Seh1, Nup85, Sec13 in Nup145 igrajo pomembno vlogo pri sestavljanju plašča jedrnih por; na protein DDB1 deluje V-protein virusa SV5 ter s tem prepreči imunski odziv; kompleks DDB1-DDB2 sobeluje v prepoznavanju in odpravljanju napak na DNA, ki so jo poškodovali UV žarki.

Žan Caf-Feldin: Glikoliza: Zgolj bioenergetska vloga ali pot preživetja

V glavnih možganskih celicah nevronih in astrocitih poteka mnogo reakcij metabolizma. Raziskava se osredotoča na njihov odziv, ko v njih z NO zaustavimo mitohondrijsko dihanje, ki je eden od ključnih segmentov celičnega dihanja. Nevroni hitro po inhibiciji umrejo, medtem ko astrociti povečajo stopnjo glikolize in tako ohranijo mitohondrijski membranski potencial ter se izognejo apoptozi. Glavno vlogo pri povečanju glikolize igra encim 6-fosfofrukto-2-kinaze/fruktoze-2,6-bisfosfataze, izooblika 3 (PFKFB3), ki ga v nevronih primanjkuje saj se konstanto razgrajuje s pomočjo E3 ubikvintinske ligaze spodbujevalnega kompleksa anafaze/ciklosoma, (APC/C)– CDH1. PFKFB3 je odgovoren za produkcijo fruktoze-2,6-bisfosfata (F2,GP2), ki aktivira 6-fosfofrukto-1-kinazo (PFK1) in je neposredni glavni regulator glikolize. Za razliko od astrocitov, nevroni glukozo večinoma uporabljajo v fosfoglukonatni poti, ki regenerira reducirani glutation vendar ne proizvede zadostnega števila ATP, da bi lahko nadomestila količine dosežene brez inhibicije mitohondrijskega dihanja. Opazovanja so pokazala tudi, da bi lahko proteosomalni protein (APC/C)– CDH1 povezoval aktivacijo glikolize in celično razmnoževanje in reguliral proteine v ciklusu delitve celice.

Protein PFKFB3

Protein (APC/C)

Brigita Razboršek: Adhezijski GPCR-ji - Odkrivanje pomena novih receptorjev

GPCR, receptorji, povezani z G proteini,znani tudi kot 7TM, sestavljajo največjo družino površinskih celičnih receptorjev, ki jih najdemo v mnogoceličarskih proteomih. Receptorji zaznajo specifičen ligand, prenesejo signal v celico in v njej sprožijo ustrezen znotrajceličen odziv. GPCR-je lahko glede na sekvenčno homologijo razdelimo v šest razredov. Adhezijski GPCR-ji predstavljajo drugi največji razred, v človeškem telesu jih najdemo kar 30.

Adhezijske GPCR definira:

- dolg N-terminalni konec z več funkcionalnimi domenami (najdemo ga na zunajcelični strani),

- zelo zapletena genomska struktura z več introni in izrezovalnimi mesti,

- 7TM regija, ki nima jasnih podobnosti s 7TM regijami drugih GPCR-jev,

- GPCR proteolitično mesto, ki povezuje velike zunajcelične regije s 7TM.

Adhezijskim GPCR-jem njihova raznolika struktura omogoča opravljanje več nalog, ki so odvisne od tkiva in vrste celic, kjer se nahajajo. Pomembno vlogo imajo v imunskem odzivu, pri tumorogenezi in v razvojni biologiji, znanstveniki pa odkrivajo vedno več funkcij, ki jih opravljajo ti edinstveni receptorji.

Viri: 1. Yona, S., Lin, H., Siu, W. O., Gordon, S., Stacey M.: Adhesion-GPCRs: emerging roles for novel receptors. Cell press, 2008,Vol.33, No. 10, 491-500

2. Bjarnadóttir, T. K., Fredrikson, R., Schiçth, H. B.: The Adhesion GPCRs: A unique family of G protein-coupled receptors with important roles in both central and peripheral tissues. Cellular and Molecular Life Sciences , 2007, Vol. 64, 2104-2119

Tisa Primc: Apoptoza inducirana prek smrtnih receptorjev

Apoptoza ali programirana celična smrt je naraven in nujno potreben proces, ki poteka v vseh večceličnih organizmih. V procesu smrti se iz organizma odstranjujejo nepotrebne in potencialno škodljive celice. Glavno vlogo pri tem odigrajo encimi kaspaze, ki so pred sproženjem procesa v celici prisotni v obliki cimogenov prokaspaz. Aktivacijo lahko sprožijo znotraj- ali izvencelični signali. Za slednje poskrbijo T limfociti, ki prepoznajo poškodovane in z virusi okužene celice. V ta namen imajo na svojem površju t.i. smrt-inducirajoče ligande, ki se vežejo na smrtne receptorje na membranah nevarnih celic. Ta povezava povzroči na intracelularnih domenah receptorjev določene konformacijske spremembe, ki omogočijo vezavo različnih adapterskih molekul, na katere se nato vežejo iniciatorske prokaspaze. Kompleksu, ki pri tem nastane pravimo DISC (Death Inducing Signalling Complex). Občutljivost celice na apoptotske signale je v veliki meri odvisna od razmerja med pro- in anti-apoptotskimi proteini iz Bcl-2 družine. Pomembno vlogo pri procesu pa odigrajo tudi mitohondriji. Med procesom pride do naluknjanja njihove zunanje membrane, pri čemer se v citosol sprostijo številni pro-apoptotski proteini, med katerimi ima glavno vlogo citokrom C. Sproščeni proteini še dodatno ojačajo signalno pot. Kaskada biokemičnih reakcij privede do morfoloških sprememb: zaradi razbitja citoskeleta se celica skrči, na površini se pojavijo mehurčkasti izrastki, jedro in mitohondriji se razgradijo, DNA pa se razreže na krajše fragmente. V končni fazi apoptoze celica razpade na apoptotska telesca, ki jih nato fagocitirajo sosednje celice in celice požiralke.

Nataša Simonič: Botulin in tetanus nevrotoksin: struktura, delovanje in terapevtska uporaba

Botulin (BoNT)[1] je eden najbolj smrtonosnih naravnih strupov. BoNT (150kDa), ki ga proizvajajo anaerobne bakterije Clostridium botulinum [2], je zgrajen iz dveh polipeptidnih verig, lahke in težke, ki sta med seboj povezani z disulfidnim mostom. Je nevrotoksin, zavira sproščanje acetilholina v živčnomišičnih stikih in povzroči botulizem oz. mišično ohromelost. Sposobnost botulina za prekinjanje živčnega prenosa so v preteklosti izkoriščali v različne namene, npr. za zdravljenje očesnih obolenj. Danes je njegova uporaba močno razširjena, najdemo ga v botoksu, kot tudi pri zdravljenju aksilarne hiperhidroze (prekomerno potenje pod pazduhami).

Tetanus nevrotoksin (TeNT)[3] proizvajajo anaerobne bakterije Clostridium tetani [4]. Po zgradbi je podoben BonT, prav tako tudi po funkciji, tudi TeNT je nevrotoksin, ki inhibira sproščanje acetilholina. To privede do tetanusa, za katerega so značilni močni mišični krči.

Oba toksina uvrščamo med klostridijske toksine (CNT), saj prihajata iz istega rodu. Mehanizem delovanja obeh nevrotoksinov je podoben le, da BoNT deluje na motornevrone, medtem ko TeNT na različne tipe nevronov.

Avtorji članka [5] so razpravljali o strukturi, mehanizmu delovanja in terapevstki uporabi teh dveh toksinov v medicini in farmaciji. Raziskovanja strukture in mehanizma delovanja BoNT in TeNT so razkrila njune odlike. Uporabili bi jih lahko za izdelavo boljših cepiv ter novih zdravil (npr. BoNT v vlogi "dostavljalca" protirakavih snovi v tumorske celice).

Laura Ogrin: Kooperativni in nekooperativni ionski kanali CNG

CNG kanali so ionski prenašalni kanali, katerih delovanje je regulirano z molekulami cNMP. Njihove funkcije v celicah so zelo različne. Običajni CNG so po zgradbi heterotetrameri. Vsaka podenota ima posebno CNBD strukturo, na kateri je vezavno mesto za cNMP. Za odprtje takega kanala je potrebnih več molekul liganda. Mehanizem je kooperativen in poteka prek alosteričnih konformacij. V raziskavi[6] so natančneje preučili zgradbo in delovanje ionskega CNG kanala iz bakterije Mesorhizobium loti (mlCNG) in ionskega kanala iz celic morskega ježka (CNGK). Kanali mlCNG so homotetrameri. Štiri enake podenote so po zgradbi podobne podenotam klasičnih CNG kanalov. CNGK kanali pa so psevdotetrameri, kar pomeni, da gre za eno daljšo polipeptidno verigo, ki pa je na videz organizirana v štiri različne podenote. Tudi te podenote imajo veliko podobnosti s tistimi v klasičnih CNG kanalih. Kljub podobnostim pa se mlCNG in CNGK razlikujejo od klasičnih CNG kanalov in sicer je bistvena razlika v tem, da mlCNG in CNGK ne delujejo kooperativno, za odprtje kanala pa je potrebna samo ena molekula liganda (cNMP). Do te razlike je najverjetneje prišlo zaradi prilagajanja mehanizmov razmeram v okolju. Tako najdemo v okolju z nizko koncentracijo cNMP-ja pretežno kanale katerih delovanje je odvisno od ene molekule, medtem ko so v okolju z visoko koncentracijo liganda v prednosti kanali s kooperativnim mehanizmom. S preučevanjem strukture so v raziskavi pojasnili tudi vzroke za selektivnost kanalov za določen ligand. Tako so mlCNG cAMP selektivni, medtem ko CNGK vežejo molekulo cGMP.