BIO1 Povzetki seminarjev 2011

From Wiki FKKT
Jump to navigationJump to search

Alja Zottel: Vloga imunskega sistema pri aterosklerozi

Glavni vzrok nastanka ateroskleroze je imunski odgovor na lipoproteine majhne gostote oz. LDL, ki se kopiči pod endotelom arterijskih žil. Apolipoprotein B100, ki je komponenta LDL, se veže na proteoglikane zunajceličnega matriksa in se pod vplivom različnih radikalov in spojin oksidira. OxLDL nato aktivira endotelijske celice, da začnejo proizvajati adhezijske beljakovine, kot sta E-selektin in VCAM-1. Te beljakovine skupaj s kemokini povlečejo monocite, T limfocite in dendritske celice v endotelijsko plast žile. Monociti se nato pod vplivom M-CSF citokina diferencirajo v makrofage. Makrofagi nato začnejo proizvajati odstranjevalne receptorje. Ti tako lahko prepoznajo oxLDL in ga z endocitozo vsrkajo. Makrofagi se zato napihnejo in spremenijo v »foam cell«. Te celice so najštevilčnejše celice v aterosklerotskih plakih. Dejavniki, ki pospešujejo nastanek ateroskleroze so signalni proteini PRR, T levkociti in proteini CRP. T celice pomagalke izločajo interferon gama, ki privlači monocite. Protein CRP se veže na navadni LDL in tako ga lahko makrofagi, ki imajo receptorje za CRP, vsrkajo. Dejavniki, ki preprečujejo nastanek ateroskleroze so B limfociti in protein PPAR. PPAR je receptorski protein oz. transkripcijski faktor, ki preprečuje nastanek »foam cell« celic in vsrkavanje LDL v makrofage. Preprečuje tudi razvoj T celic in povečuje količino HDL v krvi.


Matja Zalar: Protein p53

Protein p53, včasih imenovan tudi varuh genoma, kodira gen TP53 na sedemnajstem kromosomu. Je eden izmed tako imenovanih tumor-supresorskih proteinov, ki, kot to sporoča že samo ime, zavirajo nastanek in rast tumorjev. Na področju razumevanja delovanja, vloge in strukture proteina p53 in njegovih mutantov se izvaja veliko raziskav. Trenutno je p53 najbolj raziskan tumor-supresorski protein, še zdaleč pa ni edini. Gre za protein, ki se kopiči v jedru in z vezavo na DNA v obliki teramera nadzoruje in regulira procese kot so apoptoza, zaustavitev celičnega cikla in popravljanje poškodovane DNA. Za raziskovalce je še posebno zanimiv zaradi dejstva, da v nemutirani obliki zavira nastanek in rast tumojev, njegove GOF mutirane oblike pa pripomorejo k nenadzorovani delitvi celic in nastanku rakastih tkiv. Veliko raziskav se ukvarjaja z iskanjem snovi, ki bi obnovile osnovno obliko p53, oziroma uničile mutantske oblike p53 v rakastih celicah ter s tem uničile tumor. To pa bi lahko bistveno izboljšalo tehnike zdravljenja rakavih obolenj in odziv človeškega organizma na ta zdravljenja. Odkrili so že kar nekaj takšnih snovi (RITA, PRIMA, nutlin3), ki pa jih še vedno testirajo in še niso v redni uporabi pri zdravljenju rakavih obolenj.

Andrej Vrankar: Androgena alopecija

Na podlagi raziskav, ki so jih znanstveniki izvedli na celičnih vzorcih posameznikov z androgeno alopecijo, so ugotovili, da je bila domneva, da je za nastanek AGA kriv propad matičnih celic v lasnem mešičku oziroma, propad samega lasnega mešička napačna. Raziskave so pokazale ravno nasprotno in sicer, da se matične celice tudi v plešastem lasišču posameznika z AGA ohranjajo in da lasni mešički ne propadejo, vendar se le zelo skrčijo. So pa ugotovili, da se število celic imenovanih predniške celice v plešastem lasišču močno zmanjša, kar je eden od glavnih vzrokov za nastanek AGA, saj so prav predniške celice tiste, ki so zaslužene za rast las. Čeprav se dednost smatra kot glavni vzrok za nastanek AGA, pa tudi hormoni igrajo pomembno vlogo. Pri moških je to moški hormon testosteron, ki se s pomočjo encima 5-α-reduktaze v lasno mešičnih celicah pretvarja v svojo bolj aktivno obliko dihidrotestosteron (DHT). Ta se se nato s posebno vezjo veže na androgene receptorje v lasnih mešičkih, kar sproži posebne procese, ki skrajšajo anageno fazo celičnega cikla. Zaradi skrajšanja te faze las prej prestopi v telogeno fazo in izpade. Kako občutljivi so lasni mešički na androgene pa je seveda gensko pogojeno.

Sandi Botonjić: Tioredoksinu podoben protein (TXNL2) ščiti kancerogene celice pred oksidativnim stresom

Kisikovi radikali, ki povzročajo oksidativni stres lahko v skrajnem primeru poškodujejo DNA in tako povzročijo nenadzorovano delitev celic, kar pomeni nastanek raka v organizmu. Hkrati pa je raven kisikovih radikalov v rakastih celicah višja, kot v zdravih, in sicer zaradi onkogenih stimulacij, povečane presnovne aktivnosti ter okvare mitohondrijev. Toda rakave celice imajo, kot protiutež tudi močan antioksidantni mehanizem s katerim zavirajo programirano celično smrt.

Raziskovalci so tekom analiziranja večih tkiv, ki so obolela z različnimi vrstami raka ugotovili, da je pri vseh povečana raven tioredoksinu podobnega proteina - TXNL2. Zatem so izvajali poskuse na miših tako, da so jim vbrizgali kancerogene eritrocite in ko so se pojavili simptomi tumorja – so jim vbrizgali še protein TXNL2. Ugotovili so, da protein TXNL2 zavira rast rakavih celic. Proučevali so tudi vpliv proteina TXNL2 v mišjih zarodkih. Prišli so do zaključka, da protein TXNL2 regulira raven kisikovih radikalov tako pri živečih organizmih, kot med embriogenezo.

Znanstveniki so prepričani, da je protein TXNL2 potencialna tarča bioloških zdravil v prihodnosti. Namreč monoklonska protitelesa (med katere spade tudi TXNL2) za zdravljenje raka z vezavo na receptorje za rastne dejavnike blokirajo celično rast in diferenciacijo ter tako zaustavijo rast tumorja. Zaustavijo lahko tudi rast tumorskega ožilja in s tem posredno onemogočajo rast tumorjev in metastaziranje. Med mehanizme delovanja monoklonskih protiteles, spada tudi ciljanje drugih efektorskih molekul na mesta delovanja - kot so npr. kisikovi radikali. Raziskave so potrdile, da to velja tudi za protein TXNL2.

Ana Dolinar: Prilagojena ali prilagodljiva imunost? Primer naravnih celic ubijalk

Naravne celice ubijalke (NK celice) so vrsta levkocitov. V človeškem telesu so zadolžene za uničevanje patogenih organizmov s pomočjo za celice strupenih snovi. Na površini imajo pet skupin receptorjev: aktivacijske, inhibitorne, kemotaksične in citokine ter adhezijske receptorje.

Njihova aktivacija je odvisna od vezave ligandov na površinske receptorje NK celice. Če je vezanih več inhibitornih ligandov kot aktivacijskih, potem se NK celica ne aktivira, ker inhibitorni ligandi zavrejo delovanje NK celice. V primeru, da se veže več aktivacijskih kot inhibitornih ligandov ali pa se slednji sploh ne vežejo, se NK celica aktivira (aktivirana NK celica-rumeno, tarčna celica-rdeče). Vezava kemotaksičnih ligandov vpliva na gibanje molekule zaradi kemičnih signalov, vezava citokinov spodbuja rast celic ali sintezo snovi, ki jih potrebuje imunski sistem, vezava adhezijskih ligandov pa omogoča pritrjanje NK celice na tarčno celico.

Raziskovalci se trudijo, da bi našli optimalno imunoterapijo, pri kateri bi sodelovale NK celice. Te terapije bi bile uporabne predvsem pri rakavih obolenjih, vendar so možnosti tudi pri obolenjih z virusom HIV ali z virusom hepatitisa C. Ta način imunoterapije je mogoč, ker večina tumorskih celic in virusov ne izraža MHC tipa 1, pomembnega inhibitorskega liganda za NK celice. Zgradba MHC-1 molekule, prikazana z Ribbonovim diagramom in vezanim peptidom (A) ter površinska struktura molekule z vezanim peptidom (C). Slika B prikazuje molekulo MHC-2 z vezanim peptidom.

Urška Rauter: Razvojne vloge Srf, kortikalnega citoskeleta in celične oblike pri orientaciji epidermalnega vretena

Mehanizem nastajanja polariziranega epidermalnega sloja, ki s procesoma stratifikacije in diferenciacije tvori kožo, regulira več različnih med seboj v komplekse povezanih bioloških molekul. Trije najbolj osnovni procesi so delovanje proteinov aktina, orientacija vretena in sistem celične signalizacije. Znanstveniki pa so v obširni raziskavi potrdili tudi pomembno vlogo t. i. Srf proteina (serum response factor protein), transkripcijskega dejavnika, katerega pomembna vloga je regulacija celične diferenciacije.

Srf je transkripcijski dejavnik, ki se veže na določen, njemu ustrezen receptorski element; Sre (serum response element), to so predvsem geni v zgodnjem razvoju, geni za razvoj nevronov in mišična gena (proteina) aktin in miozin. Ker je njegova primarna funkcija regulacija ekspresije naštetih genov, odločilno vpliva na celično rast in diferenciacijo, prenos med nevroni in razvoj mišic.

Namen raziskave je obširen. Rezultati obetajoči. Dokazali so pomembno vlogo Srf proteina pri marsikaterem mehanizmu/procesu v embrionalnem razvoju. Tako recimo Srf odločilno vpliva na diferenciacijo celic, saj izguba le-tega povzroči kaotično deljenje in diferenciacijo celic med več plastmi epidermisa. Nadalje vpliva tudi na pravilno vzpostavitev polarnosti bazalne lamine in še najbolj ključno na tvorbo aktinsko-miozinskega skeleta, ki je nujen za pravilno mitozo, posledično za obliko in trdnost celice. Orientacija vretena in asimetrično dedovanje sta po zadnjih raziskavah osrednja mehanizma, ki omogočata matičnim celicam samostojno obnovi in diferenciacijo v pravilni smeri. Rezultati kažejo, da lahko takšne signale pošiljamo preko Srf proteina in aktinsko-miozinskega skeleta, za pravilno tvorbo in nadzirano regulacijo orientacije vretena, asimetrične celične delitve in nasploh usodo posamezne celice. Rezultati razkrivajo nove pojasnitve bioloških procesov, ki sodelujejo pri tvorbi morfologije epidermisa.