Organokovinska kemija
n-butillitij, organokovinska spojina. Štirje atomi litija (v vijolični barvi) tvorijo tetraeder s štirimi butilnimi skupinami pritrjenimi na ploskve (ogljik je črn, vodik je bel).
Organokovinska kemija se ukvarja s preučevanjem organokovinskih spojin. To so kemijske spojine, ki vsebujejo vsaj eno kemijsko vez med ogljikovim atomom organske spojine in kovino. Ta kovina je lahko alkalijska, zemljoalkalijska ali prehodna, včasih je lahko tudi polkovina (npr. bor, silicij in selen). Template:Sfn<ref name=":0">Template:GoldBookRef</ref> Med organokovinske spojine prav tako spadajo vezi z organskimi fragmenti ali molekulami, vezi z "anorganskim" ogljikom, kot je ogljikov monoksid (kovinski karbonili), cianid ali karbid. Kljub temu, da nekatere sorodne spojine, kot so hidridi prehodnih kovin in kovinsko-fosfinski kompleksi strogo gledano niso nujno organokovinski, so le-ti pogosto vključeni v razprave. Soroden, vendar ločen izraz "kovinoorganska spojina" se nanaša na spojine, ki vsebujejo kovino in nimajo neposrednih vezi kovina-ogljik, vendar vsebujejo organske ligande. Reprezentativni predstavniki tega razreda so kovinski β-diketonati, alkoksidi, dialkilamidi in kovino-fosfinski kompleksi. Področje organokovinske kemije združuje vidike tradicionalne anorganske in organske kemije.Template:Sfn
Organokovinske spojine se široko uporabljajo tako stehiometrično v raziskovalnih in industrijskih kemijskih reakcijah, kot tudi v vlogi katalizatorjev za povečanje hitrosti nekaterih reakcij (npr. pri uporabi [[Wikipedia:homogeneous catalysis|homogene katalize), kjer med ciljne molekule spadajo polimeri, farmacevtski izdelki in številne druge vrste praktičnih produktov.
Organokovinske spojine
Organokovinske spojine se razlikujejo po predponi "organo-" (npr. organopaladijeve spojine) in vključujejo vse spojine, ki vsebujejo vez med atomom kovine in atomom ogljika organilne spojine.<ref name=":0" /> Poleg tradicionalnih kovin ( alkalijske kovine, zemljoalkalijske kovine, prehodne kovine in po-prehodne kovine) velja, da lantanoidi, aktinoidi, polkovine in elementi, kot so bor, silicij, arzen ter selen, tvorijo organokovinske spojine. <ref name=":0" /> Primeri organokovinskih spojin vključujejo Gilmanove reagente, ki vsebujejo litij in baker, ter Grignardove reagente, ki vsebujejo magnezij. Tetrakarbonil nikelj in ferocen sta primera organokovinskih spojin, ki vsebujeta prehodne kovine. Drugi primeri organokovinskih spojin vključujejo organolitijeve spojine, kot je n-butillitij (n-BuLi), organocinkove spojine, kot je dietilcink (Et2Zn), organokositrove spojine, kot je tributilkositrov hidrid (Bu3SnH), organoborove spojine, kot je [[Wikipedia:triethylborane|trietilboran] (Et3B), in organoaluminijeve spojine kot je trimetilaluminij (Me3Al).
Naravni organokovinski kompleks je metilkobalamin (oblika Vitamin B12), ki vsebuje kobalt-metilno vez. O tem kompleksu se skupaj z drugimi biološko pomembnimi kompleksi pogosto razpravlja na področju bioorganokovinske kemije.Template:Sfn
- Ferrocene.svg
Ferocen je arhetipski kompleks organoželeza. Na zraku je stabilna spojina in lahko sublimira.
- Cobaltocene.svg
Kobaltocen je strukturni analog ferocena, vendar je zelo reaktiven na zraku.
- HRh(CO)P3again.png
dišav na osnovi aldehidov.
- Zeise'sSalt.png
Zeisova sol je primer alkenskega kompleksa prehodne kovine.
- Trimethylaluminium-from-xtal-3D-bs-17.png
Trimetilaluminij je organokovinska spojina z mostovno metilno skupino. Uporablja se v industrijski proizvodnji nekaterih alkoholov.
- Dimethylzinc-3D-balls.png
Dimetilcink ima linearno koordinacijo. Je hlapna piroforna tekočina, ki se uporablja pri pripravi polprevodniških filmov.
- Lithium-diphenylcuprate-etherate-dimer-from-xtal-2D-skeletal.png
Litijev difenilkuprat bis(dietil eterat) je primer Gilmanovega reagenta, vrste organobakrovega kompleksa, ki se pogosto uporablja v organski sintezi.
- AdoCbl-ColorCoded.png
Adenozilkobalamin je kofaktor, potreben za več ključnih encimskih reakcij, ki potekajo v človeškem telesu. Je redek primer kovinskega (kobaltovega) alkila v biologiji.
- IronPentacarbonylStructure.png
Železov(0) pentakarbonil je rdeče-oranžna tekočina, pripravljena neposredno iz zmesi fino zdrobljenega železa in plinastega ogljikovega monoksida pod tlakom.
- Tc99 sestamibi 2D structure.svg
Tehnecij[99mTc] sestamibi se uporablja za slikanje srčne mišice v nuklearni medicini.
Razlika od koordinacijskih spojin z organskimi ligandi
Veliko kompleksov vsebuje koordinacijsko vez med kovino in organskimi ligandi. Komplekse, kjer se organski ligand veže na heteroatom kot sta kisik ali dušik, uvrščamo med koordinacijske spojine (npr. heme A in Fe(acac)3). V primeru, da kateri izmed ligandov tvori vez kovina-ogljik (M-C), potem tak kompleks uvrščamo med organokovinske spojine. Čeprav IUPAC uradno še ni definiral terminologije, nekateri kemiki uporabljajo pojem “organokovinski”, da opišejo katerokoli koordinacijsko spojino, ki vsebuje organski ligand, ne glede na odsotnost direktne vezi M-C.<ref>Template:Cite book</ref>
Položaj spojin v katerih ima kanonični anion negativen naboj, ki se porazdeli med (delokaliziran) ogljikov atom in atom, ki je bolj elektronegativen od ogljika (npr. enolati) ), se lahko razlikuje glede na lastnosti anionskega dela, kovinskega iona ali medija. V primeru, da direktna vez ogljik-kovina v spojini ni dokazana, se te spojine ne uvršča med organokovinske.<ref name=":0" /> Kot primer, litijevi enolati pogosto vsebujejo le Li-O vezi in niso organokovinski, medtem ko cinkovi enolati (Reformatsky reagenti) vsebujejo tako Zn-O vezi kot tudi Zn-C vezi in jih, zato uvrščamo med organokovinske.
Struktura in lastnosti
Vez kovina-ogljik v organokovinskih spojinah je močno kovaletna.Template:Sfn . Za močno elektropozitivne elemente, kot sta litij in natrij, ima ogljikov ligand karbanionski značaj značaj, vendar so prosti ogljikovi anioni zelo redki, takšen primer je cianid cianid.
Večina organokovinskih spojin je trdnih pri sobni temperaturi, vendar so nekateri tekoči (npr.metilciklopentadienil mangan trikarbonil ali celo hlapni ali celo hlapni nikljev tetrakarbonil.Template:Sfn Veliko organokovinskih spojin je občutljivih na zrak (reagirajo s kisikom in vlago), zato se z njimi dela v inertni atmosferi.Template:Sfn Nekatere organokovinske spojine, kot je trietilaluminij so piroforne, kar pomeni, da pri njih lahko pride do vžiga že ob stiku z zrakom.<ref></ref>
Concepts and techniques
As in other areas of chemistry, electron counting is useful for organizing organometallic chemistry. The 18-electron rule is helpful in predicting the stabilities of organometallic complexes, for example metal carbonyls and metal hydrides. The 18e rule has two representative electron counting models, ionic and neutral (also known as covalent) ligand models, respectively.<ref name=":02">Template:Cite book</ref> The hapticity of a metal-ligand complex, can influence the electron count.<ref name=":02" /> Hapticity (η, lowercase Greek eta), describes the number of contiguous ligands coordinated to a metal.<ref name=":02" /> For example, ferrocene, [(η5-C5H5)2Fe], has two cyclopentadienyl ligands giving a hapticity of 5, where all five carbon atoms of the C5H5 ligand bond equally and contribute one electron to the iron center. Ligands that bind non-contiguous atoms are denoted the Greek letter kappa, κ.<ref name=":02" /> Chelating κ2-acetate is an example. The covalent bond classification method identifies three classes of ligands, X,L, and Z; which are based on the electron donating interactions of the ligand. Many organometallic compounds do not follow the 18e rule. The metal atoms in organometallic compounds are frequently described by their d electron count and oxidation state. These concepts can be used to help predict their reactivity and preferred geometry. Chemical bonding and reactivity in organometallic compounds is often discussed from the perspective of the isolobal principle.
A wide variety of physical techniques are used to determine the structure, composition, and properties of organometallic compounds. X-ray diffraction is a particularly important technique that can locate the positions of atoms within a solid compound, providing a detailed description of its structure.Template:SfnTemplate:Sfn Other techniques like infrared spectroscopy and nuclear magnetic resonance spectroscopy are also frequently used to obtain information on the structure and bonding of organometallic compounds.Template:SfnTemplate:Sfn Ultraviolet-visible spectroscopy is a common technique used to obtain information on the electronic structure of organometallic compounds. It is also used monitor the progress of organometallic reactions, as well as determine their kinetics.Template:Sfn The dynamics of organometallic compounds can be studied using dynamic NMR spectroscopy.Template:Sfn Other notable techniques include X-ray absorption spectroscopy,<ref>Template:Cite journal</ref> electron paramagnetic resonance spectroscopy, and elemental analysis.Template:SfnTemplate:Sfn
Due to their high reactivity towards oxygen and moisture, organometallic compounds often must be handled using air-free techniques. Air-free handling of organometallic compounds typically requires the use of laboratory apparatuses such as a glovebox or Schlenk line.Template:Sfn
History
Early developments in organometallic chemistry include Louis Claude Cadet's synthesis of methyl arsenic compounds related to cacodyl, William Christopher Zeise's<ref>Template:Cite journal</ref> platinum-ethylene complex,<ref>Template:Cite journal</ref> Edward Frankland's discovery of diethyl- and dimethylzinc, Ludwig Mond's discovery of Ni(CO)4,Template:Sfn and Victor Grignard's organomagnesium compounds. (Though not always acknowledged as an organometallic compound, Prussian blue, a mixed-valence iron-cyanide complex, was first prepared in 1706 by paint maker Johann Jacob Diesbach as the first coordination polymer and synthetic material containing a metal-carbon bond.Template:Sfn) The abundant and diverse products from coal and petroleum led to Ziegler–Natta, Fischer–Tropsch, hydroformylation catalysis which employ CO, H2, and alkenes as feedstocks and ligands.
Recognition of organometallic chemistry as a distinct subfield culminated in the Nobel Prizes to Ernst Fischer and Geoffrey Wilkinson for work on metallocenes. In 2005, Yves Chauvin, Robert H. Grubbs and Richard R. Schrock shared the Nobel Prize for metal-catalyzed olefin metathesis.<ref>Template:Cite journal</ref>
Organometallic chemistry timeline
- 1760 Louis Claude Cadet de Gassicourt investigates inks based on cobalt salts and isolates cacodyl from cobalt mineral containing arsenic
- 1827 William Christopher Zeise produces Zeise's salt; the first platinum / olefin complex
- 1848 Edward Frankland discovers diethylzinc
- 1863 Charles Friedel and James Crafts prepare organochlorosilanes
- 1890 Ludwig Mond discovers nickel carbonyl
- 1899 Introduction of Grignard reaction
- 1899 John Ulric Nef discovers alkynylation using sodium acetylides.
- 1900 Paul Sabatier works on hydrogenation organic compounds with metal catalysts. Hydrogenation of fats kicks off advances in food industry, see margarine
- 1909 Paul Ehrlich introduces Salvarsan for the treatment of syphilis, an early arsenic based organometallic compound
- 1912 Nobel Prize Victor Grignard and Paul Sabatier
- 1930 Henry Gilman works on lithium cuprates, see Gilman reagent
- 1951 Walter Hieber was awarded the Alfred Stock prize for his work with metal carbonyl chemistry.
- 1951 Ferrocene is discovered
- 1956 Dorothy Crawfoot Hodgkin determines the structure of vitamin B12, the first biomolecule found to contain a metal-carbon bond, see bioorganometallic chemistry
- 1963 Nobel prize for Karl Ziegler and Giulio Natta on Ziegler–Natta catalyst
- 1965 Discovery of cyclobutadieneiron tricarbonyl
- 1968 Heck reaction is developed
- 1973 Nobel prize Geoffrey Wilkinson and Ernst Otto Fischer on sandwich compounds
- 1981 Nobel prize Roald Hoffmann and Kenichi Fukui for creation of the Woodward-Hoffman Rules
- 2001 Nobel prize W. S. Knowles, R. Noyori and Karl Barry Sharpless for asymmetric hydrogenation
- 2005 Nobel prize Yves Chauvin, Robert Grubbs, and Richard Schrock on metal-catalyzed alkene metathesis
- 2010 Nobel prize Richard F. Heck, Ei-ichi Negishi, Akira Suzuki for palladium catalyzed cross coupling reactions
Obseg
Podpodročja organokovinske kemije obsegajo:
- elementi 2. periode: organolitijeva kemija, organoberilijeva kemija, organoborova kemija
- elementi 3. periode: organonatrijeva kemija, organomagnezijeva kemija, organoaluminijeva kemija, organosilicijeva kemija
- elementi 4. periode: organokalcijeva kemija, organoskandijeva kemija, organotitanova kemija, organovanadijeva kemija, organokromova kemija, organomanganova kemija, organoželezova kemija, organokobaltova kemija, organonikljeva kemija, organobakrova kemija, organocinkova kemija, organogalijeva kemija, organogermanijeva kemija, organoarzenova kemija, organoselenova kemija
- elementi 5. periode: organoitrijeva kemija, organocirkonijeva kemija, organoniobijeva kemija, organomolibdenova kemija, organorutenijeva kemija, organorodijeva kemija, organopaladijeva kemija, organosrebrova kemija, organokadmijeva kemija, organoindijeva kemija, organokositrova kemija, organoantimonova kemija, organotelurjeva kemija
- elementi 6. periode: organolantanova kemija, organocerijeva kemija, organotantalova kemija, organorenijeva kemija, organoosmijeva kemija, organoiridijeva kemija, organoplatinska kemija, organozlata kemija, organoživosrebrova kemija, organotalijeva kemija, organosvinčeva kemija, organobizmuntova kemija, organopolonijeva kemija
- elementi 7. periode: organoaktinijeva kemija, organouranova kemija, organoneptunijeva kemija
Industrial applications
Organometallic compounds find wide use in commercial reactions, both as homogenous catalysts and as stoichiometric reagents. For instance, organolithium, organomagnesium, and organoaluminium compounds, examples of which are highly basic and highly reducing, are useful stoichiometrically but also catalyze many polymerization reactions.Template:Sfn
Almost all processes involving carbon monoxide rely on catalysts, notable examples being described as carbonylations.<ref name=Ullmann>Template:Ullmann</ref> The production of acetic acid from methanol and carbon monoxide is catalyzed via metal carbonyl complexes in the Monsanto process and Cativa process. Most synthetic aldehydes are produced via hydroformylation. The bulk of the synthetic alcohols, at least those larger than ethanol, are produced by hydrogenation of hydroformylation-derived aldehydes. Similarly, the Wacker process is used in the oxidation of ethylene to acetaldehyde.Template:Sfn
Almost all industrial processes involving alkene-derived polymers rely on organometallic catalysts. The world's polyethylene and polypropylene are produced via both heterogeneously via Ziegler–Natta catalysis and homogeneously, e.g., via constrained geometry catalysts.<ref>Template:Cite journal</ref>
Most processes involving hydrogen rely on metal-based catalysts. Whereas bulk hydrogenations (e.g., margarine production) rely on heterogeneous catalysts, for the production of fine chemicals such hydrogenations rely on soluble (homogenous) organometallic complexes or involve organometallic intermediates.<ref name=Rylander>Template:Ullmann</ref> Organometallic complexes allow these hydrogenations to be effected asymmetrically.
Many semiconductors are produced from trimethylgallium, trimethylindium, trimethylaluminium, and trimethylantimony. These volatile compounds are decomposed along with ammonia, arsine, phosphine and related hydrides on a heated substrate via metalorganic vapor phase epitaxy (MOVPE) process in the production of light-emitting diodes (LEDs).
Organokovinske reakcije
Organokovinske spojine so podvržene številnim pomembnim reakcijam:
- asociativna in disociativna substitucija
- oksidativna adicija in reduktivna eliminacija
- transmetilacija
- migracijski vložek (ang. migratory insertion)
- β-hidrid eliminacija
- prenos elektrona
- aktivacija vezi ogljik-ogljik
- ogljikometalacija (ang. carbometalation)
- hidrometalacija (ang. hydrometalation)
- ciklometalacija
- nukleofilna abstrakcija
Organokovinski kompleksi olajšajo sintezo mnogih organskih spojin. Metateza sigma vezi je način tvorjenja novih ogljik-ogljik sigma vezi. Običajno se uporablja pri kompleksih prehodnih kovin leve polovice d-bloka, ki so v svojem najvišjem oksidacijskem stanju.<ref>Template:Cite journal</ref> Uporaba prehodnih kovin, ki so v najvišjih možnih oksidacijskih stanjih prepreči, da potečejo druge reakcije, kot je recimo oksidativna adicija. Poleg metateze sigma vezi, se metateza alkenov oz. olefinska metateza uporablja za tvorbo raznih ogljik-ogljik pi vezi. Nobena od teh metatez ne spremeni oksidacijskega stanja kovine.<ref></ref><ref></ref> Za tvorbo novih ogljik-ogljik vezi se uporabljajo tudi številne druge metode, kot sta beta-hidrid eliminacija in reakcija vstavljanja (ang. insertion reaction).
Kataliza
Organokovinski kompleksi se običajno uporabljajo za katalize. Glavni industrijski procesi vključujejohidrogenacijo, hidrosililacijo, hidrocianacijo, olefinsko metatezo, alkensko polimerizacijo, alkensko oligomerizacijo, hidrokarboksilacijo, karbonilacijo metanola in hidroformilacijo.Template:Sfn Organokovinski intermediati so tudi vključeni v številne heterogene katalize, analogne tem, ki so zgoraj naštete. Prav tako predvidevajo, da so uporabni za Fischer-Tropschev proces.
Organokovinski kompleksi se pogosto uporabljajo pri finih kemijskih sintezah v mikromerilu, posebej v "cross-coupling" reakcijahs<ref>Template:Cite journal</ref> , ki tvorijo vezi ogljik-ogljik, npr. Suzuki-Miyaura spajanje,<ref>Template:Cite journal</ref> Buchwald-Hartwigova aminacija za tvorbo aril aminov iz aril halidov,<ref>Template:Cite journal</ref> and Sonogashira spajanje, itd.
Tveganje za okolje
V okolju najdemo organokovinske spojine, ki so naravne in nevarne za okolje. Nekatere organokovinske spojine v okolju so posledica človeške rabe. To so na primer organosvinčeve in organoživosrebrove spojine, ki so toksične. Tetraetilsvinec je bil pripravljen kot dodatek k bencinu, a se zaradi svinčeve toksičnosti ne uporablja več. Njegov nadomestek so druge organokovinske spojine, kot je npr. ferocen in metilciklopentadienil manganov trikarbonil (MMT).<ref name="Seyferth">Template:Cite journal</ref> Organoarzenova spojina roxarson je sporen dodatek h krmi za živali. Leta 2006 bi se ga naj samo v ZDA proizvedlo približno milijon kilogramov.<ref>Template:Cite journal</ref> Organokositrove spojine so se široko uporabljale v barvah proti obraščanju, ampak so jih zaradi tveganja za okolje prepovedali.<ref>Template:Cite journal</ref>
See also
References
<references/>
Sources
- Template:Cite book
- Template:Cite book
- Template:Cite book
- Template:Cite book
- Template:Cite book
- Template:Cite book
- Template:Cite book
- Template:Cite book
- Template:Cite book
External links
- MIT OpenCourseWare: Organometallic Chemistry
- Rob Toreki's Organometallic HyperTextbook
- web listing of US chemists who specialize in organometallic chemistry
Template:Organometallics Template:BranchesofChemistry Template:ChemicalBondsToCarbon Template:Authority control