Sendvič spojine

From Wiki FKKT
Revision as of 18:26, 27 January 2023 by Jošt Tručl (talk | contribs) (New page: = SENDVIČ SPOJINE = V organokovinski kemiji je sendvič spojina kemijska spojina, ki vsebuje kovino, vezano s kovalentnimi vezmi na dva arenska (obročna) liganda. Areni imajo formulo CnH...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

SENDVIČ SPOJINE

V organokovinski kemiji je sendvič spojina kemijska spojina, ki vsebuje kovino, vezano s kovalentnimi vezmi na dva arenska (obročna) liganda. Areni imajo formulo CnHn, substituirani derivati (na primer Cn(CH3)n) in heterociklični derivati (na primer BCnHn+1). Ker se kovina običajno nahaja med obema obročema, pravimo, da je v "sendviču". Poseben razred sendvič kompleksov so metaloceni. Izraz sendvič spojina je bil uveden v organokovinsko nomenklaturo leta 1956 v poročilu J. D. Dunitza, L. E. Orgela in R. A. Richa, kjer so potrdili strukturo ferocena z rentgensko kristalografijo.[1] Pravilno strukturo, v kateri ima molekula atom železa, stisnjen med dva vzporedna ciklopentadienilna obroča, sta nekaj let pred tem predlagala Robert Burns Woodward ter Ernst Otto Fischer. Struktura je pomagala razložiti konformer ferocena. Ta rezultat je dodatno pokazal moč rentgenske kristalografije in pospešil razvoj organokovinske kemije.[2]

Razredi Najbolj znani so metaloceni, ki imajo formulo M(C5H5)2, kjer je M = Cr, Fe, Co, Ni, Pb, Zr, Ru, Rh, Os, Sm, Ti, V, Mo, W, Zn. Te spojine imenujemo tudi bis(ciklopentadienil)kovinski kompleksi. Tudi drugi areni lahko služijo kot ligandi: • Mešani ciklopentadienilni kompleksi: M(C5H5)(CnHn). Nekateri primeri so Ti(C5H5)(C7H7) in (C60)Fe(C5H5Ph5), kjer fulerenski ligand deluje kot analog ciklopentadienila. • Bis(benzen) kompleksi: M(C6H6)2, najbolj znan primer je bis(benzen)krom. • Bis(ciklooktatetraenil) kompleksi: M(C8H8)2, kot sta U(C8H8)2 in Th(C8H8)2 (oba aktinocena). • Kompleksi kovina–karboran (metalakarborani) so zelo velika in raznolika družina, v kateri so ioni glavnih skupin PSE in kovin prehoda koordinirani s karboranskim ligandom in tako tvorijo poliedrske kletke velikosti od 6 do 15 oglišč. Primeri vključujejo bis(dikarbolidne) komplekse [4], kot sta [M(C2B9H11)2]z- in [Fe(C2B9H11)2]2−, in majhne karboranske sendviče, kot sta (R2C2B3H5)M(C2B4H6) in (R5C5 )M(R'2)C2B4H4), kjer je M prehodna kovina, R in R' pa sta metil ali etil.[5][6]

Sorodni so tudi kovinski kompleksi, ki vsebujejo H3C3B2R2 (diborolilne) ligande.[7] Poleg teh so tudi znani drugi sendvič kompleksi, ki vsebujejo povsem anorganske ligande, kot sta Fe(C5Me5)(P5) in [(P5)2Ti]2−.[8]

Polsendvič spojine

Monometalne polsendvič spojine Metaloceni, ki so sestavljeni iz enega planarnega organskega liganda namesto dveh, so del velike družine spojin, ki ji pravimo polsendvične spojine. Najbolj znan primer je metilciklopentadienil mangan trikarbonil. Takšne oblike se običajno imenujejo spojine klavirskega stolčka, vsaj kadar obstajajo trije dvoatomski ligandi poleg ogljikovodikovega "sedeža" klavirskega stolčka. Ime izhaja iz podobnosti strukture s takšnim "stolčkom", pri čemer je sedež planarna organska spojina (obrnjena navzgor), kot sta benzen ali ciklopentadien, noge pa so ligandi, kot sta CO ali alil.[9][10] Spojine, kot sta ciklopentadienilželezo dikarbonilni dimer in ciklopentadienilmolibdentrikarbonilni dimer, lahko štejemo za poseben primer polsendvičev, razen da so dimetalne. Strukturno sorodna vrsta je [Ru(C6H6)Cl2]2.

Večnadstropni sendviči

Prvi izolirani večnadstropni sendvič je bil tris(ciklopentadienil)dinikelj trinadstropni kompleks [Ni2Cp3]BF4. Ta spojina je zelo občutljiva na zrak in vodo. O njej so poročali leta 1972,[11] z rentgensko kristalografsko potrditvijo pa leta 1974.[12] Leta 1973 so izolirali električno nevtralne in na zraku stabilne trinadstropne kobaltakarboranske sendvič spojine 1,7,2,3- in 1,7,2,4-CpCo(RHC2B3H3)Cp (kjer je R = H, Me) in jih karakterizirali z večjederno NMR in rentgenskimi (X žarkovnimi) študijami[13].

Pripravljena je bila tudi obsežna družina večnadstropnih sendvičev, ki vključujejo planarne (R2R'C3B2R2)3-(diborolil) ligande. [17] Pripravljene so bile tudi številne večnadstropne sendvič spojine z ogljikovodikovimi premostitvenimi obroči, zlasti tronadstropni.[18] Vsestranska metoda vključuje pritrditev Cp*Ru+ na predhodno oblikovane sendvič komplekse.[19]

Povezani sendviči

Monomerni dvonadstropni sendviči so bili uporabljeni kot gradniki za razširjene sisteme, kjer se pri nekaterih kaže delokalizacija elektronov med kovinskimi centri. Primer cikličnega poli(metalakarboranskega) kompleksa je spodaj prikazan oktaedrski "ogljikov žični" sistem, ki vsebuje ravninski makrocikel C16B8.[20]

Inverzni sendviči

Pri antibimetalnih spojinah je ugotovljeno, da so kovine premoščene z enim karbocikličnim obročem. Primeri vključujejo [(THF)3Ca]2(1,3,5-trifenilbenzen)[21] in [(Ar)Sn]2COT.

Dvojne in multimetalne sendvič spojine

Druga družina sendvič spojin vključuje več kot eno kovino, stisnjeno med dva karbociklična obroča. Primeri dvojnega sendviča vključujejo V2(indenil)2, [22] Ni2(COT)2[23] in Cr2(pentalen)2. Spodaj je prikazan primer multimetalne sendvič spojine, ki ima štiri atome paladija, ki so povezani v verigo, stisnjeno med dve perilenski enoti. [24] Protiioni so zajetni tetraarilborati.

Aplikacije

Ferocen in metilciklopentadienil mangan trikarbonil sta bila uporabljena kot sredstvi proti detonaciji. Nekateri upognjeni metaloceni cirkonija in hafnija so učinkoviti predkatalizatorji za polimerizacijo propilena. Številni polovični sendvič kompleksi rutenija, na primer tisti, ki so pridobljeni iz dimera (cimen)rutenijevega diklorida, katalizirajo transferno hidrogenacijo, uporabno reakcijo v organski sintezi.[25][potreben je neprimarni vir]

Viri

1. Dunitz, J.; Orgel, L.; Rich, A. (1956). "The crystal structure of ferrocene". Acta Crystallographica. 9 (4): 373–375. doi:10.1107/S0365110X56001091. 2. Miessler, G. L.; Tarr, Donald A. (2004). Inorganic Chemistry. Upper Saddle River, NJ: Pearson Education. ISBN 0-13-035471-6. 3. Zeinstra, J.D.; De Boer, J.L. (1973). "Structure of Cyclopentadienylcycloheptatrienyl-titanium". Journal of Organometallic Chemistry. 54: 207–211. doi:10.1016/S0022-328X(00)85010-X. 4. Kang, H. C.; Lee, S. S.; Knobler, C. B.; Hawthorne, M. F. (1991). "Syntheses of Charge-Compensated Dicarbollide Ligand Precursors and Their Use in the Preparation of Novel Metallacarboranes". Inorganic Chemistry. 30 (9): 2024–2031. doi:10.1021/ic00009a015. 5. Grimes, R. N. (1999). "Small Carborane Ligands as Spectators and as Players". Journal of Organometallic Chemistry. 581 (1–2): 1–12. doi:10.1016/S0022-328X(99)00050-9. 6. Grimes, R. N. (2016). "13. Metallacarboranes of the Transition and Lanthanide Elements". Carboranes (3rd ed.). Oxford: Elsevier. ISBN 9780128019054. 7. Siebert, W. (1988). "Polydecker sandwich complexes". Pure & Applied Chemistry. 60 (8): 1345–1348. doi:10.1351/pac198860081345. 8. Urnezius, E.; Brennessel, W. W.; Cramer, C. J.; Ellis, J. E.; Schleyer, P. von R. (2002). "A Carbon-Free Sandwich Complex [(P5)2Ti]2−". Science. 295 (5556): 832–834. Bibcode:2002Sci...295..832U. doi:10.1126/science.1067325. PMID 11823635. S2CID 36455193. 9. Begley, M. J.; Puntambekar, S. G.; A. H., Wright (1987). "A di-iron–anthracene complex via ultrasonics". Chemical Communications. 1987 (16): 1251–1252. doi:10.1039/C39870001251. 10. Begley, M. J.; Puntambekar, S. G.; Wright, A. H. (1989). "Synthesis and reactivity of a new class of half-sandwich arene–iron complex: structure of [C6H3Me3Fe(C3H5)(CO)]PF6". Journal of Organometallic Chemistry. 362 (1–2): C11–C14. doi:10.1016/0022-328X(89)85301-X. 11. Salzer, A.; Werner, H. (1972). "Studies on the Reactivity of Metal π‐Complexes. 6. A New Route to Triple‐Decker Sandwich Compounds". Angewandte Chemie International Edition. 11 (10): 930–932. doi:10.1002/anie.197209301. 12. Dubler, E.; Textor, M.; Oswald, H.-R.; Salzer, A. (1974). "X‐Ray Structure Analysis of the Triple‐Decker Sandwich Complex Tris(η‐cyclopentadienyl)dinickel Tetrafluoroborate". Angewandte Chemie International Edition. 13 (2): 135–136. doi:10.1002/anie.197401351. 13. Grimes, R. N.; Beer, D. C.; Sneddon, L. G.; Miller, V. R.; Weiss, R. (1974). "Small cobalt and nickel metallocarboranes from 2,3-dicarbahexaborane(8) and 1,6-dicarbahexaborane(6). Sandwich complexes of the cyclic C2B3H7(2^{-}) and C2B3H5(4^{-}) ligands". Inorganic Chemistry. 13 (5): 1138–1146. doi:10.1021/ic50135a025. 14. Grimes, R. N. (2007). "Boron-Containing Rings Ligated to Metals". In Crabtree, R. H.; Mingos, D. M. P. (eds.). Comprehensive Organometallic Chemistry III. Vol. 3. Oxford: Elsevier. pp. 1–48. doi:10.1016/B0-08-045047-4/00042-X. ISBN 978-0-08-045047-6. 15. Wang, X.; Sabat, M.; Grimes, R. N. (1995). "Organotransition-Metal Metallacarboranes. 43. Directed Synthesis of Carborane-End-Capped Multidecker Sandwiches". Journal of the American Chemical Society. 117 (49): 12218–12226. doi:10.1021/ja00154a023. 16. Wang, X.; Sabat, M.; Grimes, R. N. (1995). "Organotransition-Metal Metallacarboranes. 44. Construction of Pentadecker and Hexadecker Sandwiches from Triple-Decker Building Blocks". Journal of the American Chemical Society. 117 (49): 12227–12234. doi:10.1021/ja00154a024. 17. Siebert, W. (1993). "Di- and Trinuclear Metal Complexes of Diboraheterocycles". Advances in Organometallic Chemistry. 35: 187–210. doi:10.1016/S0065-3055(08)60491-8. ISBN 9780120311354. 18. Beck, V.; O'Hare, D. (2004). "Triple-decker transition metal complexes bridged by a single carbocyclic ring". Journal of Organometallic Chemistry. 689 (24): 3920–3938. doi:10.1016/j.jorganchem.2004.06.011. 19. Fagan, P. J.; Ward, M. D.; Calabrese, J. C. (1989). "Molecular engineering of solid-state materials: organometallic building blocks". Journal of the American Chemical Society. 111 (5): 1698–1719. doi:10.1021/ja00187a024. 20. Yao, H.; Sabat, M.; Grimes, R. N.; Fabrizi de Biani, F.; Zanello, P. (2003). "Organotransition‐Metal Metallacarboranes. 63. Metallacarborane‐Based Nanostructures: A Carbon‐Wired Planar Octagon". Angewandte Chemie International Edition. 42 (9): 1002–5. CiteSeerX 10.1.1.615.6577. doi:10.1002/anie.200390255. PMID 12616549. 21. Krieck, S.; Gorls, H.; Yu, L.; Reiher, M.; Westerhausen, M. (2009). "Stable "Inverse" Sandwich Complex with Unprecedented Organocalcium(I): Crystal Structures of [(thf)2Mg(Br)\sC6H2\s2,4,6\-Ph3] and [(thf)3Ca{μ\-C6H3\s1,3,5\-Ph3}Ca(thf)3]". Journal of the American Chemical Society. 131 (8): 2977–2985. doi:10.1021/ja808524y. PMID 19193100. 22. Jonas, K.; Rüsseler, W.; Krüger, C.; Raabe, E. (1986). "Synthesis of Diindenyldivanadium—a New Variant of the Reductive Degradation of Metallocenes and Related Compounds". Angewandte Chemie International Edition. 25 (10): 928–929. doi:10.1002/anie.198609281. 23. Brauer, D. J.; Kruger, C. (1976). "The stereochemistry of transition metal cyclooctatetraenyl complexes: di-η3,η3′-cyclooctatetraenedinickel, a sandwich compound with two enveloped nickel atoms". Journal of Organometallic Chemistry. 122: 265–273. doi:10.1016/S0022-328X(00)80619-1. 24. Murahashi, T.; Uemura, T.; Kurosawa, H. (2003). "Perylene–Tetrapalladium Sandwich Complexes". Journal of the American Chemical Society. 125 (28): 8436–8437. doi:10.1021/ja0358246. PMID 12848540. 25. Ikariya, T.; Hashiguchi, S.; Murata, K.; Noyori, R. (2005). "Preparation of Optically Active (R,R)-Hydrobenzoin from Benzoin or Benzil". Organic Syntheses. 82: 10. doi:10.15227/orgsyn.082.0010.