Vloga plazmidov v bakterijski evoluciji
Uvod
Plazmidi imajo velik pomen v bakterijski ekologiji in evoluciji, saj omogočajo horizontalni prenos genov (HGT), kjer se genetske informacije prenašajo preko odnosov med nesorodnimi organizmi (transdukcija, transformacija, konjugacija, prenos z vezikli). Poleg tega da so plazmidi ključni prenašalci genskih informacij so za evolucijo pomembni tudi, ker je v celici več kopij, kar omogoča poliploidnost in je tako evolucija plazmidnih genov drugačna kot pri kromosomskih genih, kar oblikuje nenavadne koncepte v bakterijski genetiki, kot so genetska dominanca, heteroplazija in porazdelitveni odmik (celična delitev poteka neselektivno glede na plazmidne alele, zato lahko pride do izgube nekaterih genov).
Lastnosti plazmida
Že od začetka so male genetske molekule med seboj tekmovale za samoreplikacijo in tako je evolucija vseh organizmov posledica soobstoja več genetsko različnih DNA molekul znotraj celice. Tukaj plazmidi, kot molekule, ki se delijo neodvisno od kromosomske DNA, izstopajo kot vodilo za horizontalni prenos genov (HGT) pri prokariontih. Plazmidi vsebujejo gene, ki jim zagotavljajo preživetje in prenos, ki so pogosto neugodni za gostitelja, imajo pa tudi pomembni vlogo pri prenosu pomembnih lastnosti znotraj in med različnimi bakterijskimi vrstami, kar pozitivno vpliva na gostitelja. Tako obstaja kompromis med parazitskim in vzajemnim načinom življenja plazmidov, kar otežuje razumevanje njihovega obstoja. Razumevanje dejavnikov, ki vplivajo na evolucijo plazmidov je zato ključna za razumevanje razvoja lastnosti plazmida, kot so odpornost na antibiotike in bakterijska nalezljivost (virulenca). Kot vemo so plazmidi zelo raznoliki, razlikujejo se po velikosti, številu kopij, replikacijskih mehanizmih, mehanizmih prenosa, DNA topologiji (linearen, krožen), vrste genov, ki jih vsebujejo in drugo. Kljub njihovi raznolikosti pa jih lahko razdelimo v dve večji skupini, ki sta pomembni za evolucijo: plazmid z malo kopijami v celici (LCP), ki so po navadi večji in konjugativni (se lahko prenašajo iz ene bakterije v drugo) in plazmid z veliko kopijami v celici (HCP), ki so manjši in po navadi niso konjugativni, lahko pa se modificirajo preko konjugativnega aparata sosednjega plazmida. Plazmidi kodirajo številne lastnosti, ki jim omogočajo preživetje in omogočajo prilagoditev gostitelja na okoljske pogoje v katerem živi. Medtem, ko nekateri plazmidi vsebujejo le gene, ki jim omogočajo preživetje, večina vsebujejo še dodatne gene, ki posledično omogočajo razgradnjo toksinov ali pa omogočajo nove metabolne zmogljivosti. Tukaj je pomemben pomen odpornosti na antibiotike, ki je tudi razlog za nekontrolirano širitev bakterijskih patogenov. HGT je glavni faktor, ki poganja bakterijski evolucijo. HGT omogoča, da si taksonomsko različni organizmi delijo skupni genski sklad, kar briše meje med različnimi filogenetskimi družinami in pojasni zakaj se tesno povezani prokarionti razlikujejo v genih. Ena od poglavitnih lastnosti plazmida je tudi da se nahajajo v več kopijah v celci, kar opišemo z PCN (Plasmid copy number). Ker plazmidi HCP niso konjugativni se zanašajo na visoko PCN, kar jim omogoča prenos skozi generacije in se s tem izognejo izgubi kot posledici porazdelitev plazmidov v hčerinske celice. Plazmidi nadzorujejo število kopij skozi rast, s pomočjo negativnih povratnih zank. Število plazmidov se pri bakterijah iz iste družine zelo razlikuje, kot posledica mutacij ali zunanjih pogojev.
Primer evolucije bakterij, kot posledice lastnosti napisane na plazmidu, so vodne bakterije, ki imajo sposobnost anoksigene fotosinteze, ker pa so te nekaj časa živele v simbiozi z bakterijami, ki imajo zmožnost sinteze esencialnih aminokislin in vitaminov pomembnih za njihovo delovanje, so se skozi evolucijo vodne bakterije spremenile iz prosto živečih organizmov v organizme, ki so odvisni od endosimbioze.
Vpliv števila kopij plazmida na evolucijo
Povečano izražanje genov
Porazdelitveni odmik in plazmidna interferenca
Plazmidi imajo različne načine dedovanja. Celice z velikim številom kopij plazmida se običajno zanašajo na naključno porazdelitev med celično delitvijo. Pri celicah z manjšim številom kopij plazmidov pa ni tako, saj bi se lahko zgodilo, da ena od hčerinskih celic ne bi vsebovala plazmida. Zato take celice uporabljajo sistem aktivnega razdeljevanja, ki med celično delitvijo razdeli po enako število plazmidov v vsako hčerinsko celico. Tudi če celica vsebuje več kopij istega plazmida, ko se pojavi mutacija na plazmidno-kodiranem genu bo ta prisotna le pri eni kopiji plazmida. Posledično plazmidi, ki nosijo zapise za nove alele, sobivajo s kopijami prvotnih plazmidov, dokler se sčasoma ne porazdelijo v dve ločeni celični liniji. Soobstoj različnih variant istega plazmida znotraj ene celice se imenuje heteroplazmija. Te celice vsebujejo tako imenovane heterozigotne plazmidne alele, medtem ko homoplazmidne celice vsebujejo homozigotne plazmidne alele. Porazdelitev mutiranih in nemutiranih kopij plazmidov je lahko popolna ali naključna. Pri popolni razdelitvi obe hčerinski celici vsebujeta enako porazdelitev nemutiranih in mutiranih plazmidov. Pri naključni razdelitvi pa imata hčerinski celici skupaj enako število nemutiranih in mutiranih plazmidov kot pri popolni razdelitvi, a ni nujno, da sta si celici med seboj identični ali identični matični celici. Lahko se zgodi da ena hčerinska celica podeduje vse mutirane celice druga pa ima vse plazmide nemutirane. Hčerinske celice pogosto podedujejo alelno sestavo, ki se razlikuje od sestave materinske celice. Evolucija plazmidov je tako podvržena dodatnemu sloju genetskega odmika, tako imenovanega porazdelitvenega odmika. Posledica naključnega dedovanja je spremenjena znotrajcelična frekvenca plazmidno kodiranih alelov. Porazdelitveni odmik podaljša čas fiksacije koristnih mutacij za plazmid v primerjavi s kromosomskimi mutacijami. Če se pojavi dobra mutacija pri kopiji plazmida preden je mutacija, ki se je pojavila pred to na drugi kopiji plazmida, fiksirana, se pojavi tako imenovana plazmidna interferenca. Pri plazmidni interferenci istočasno obstajata dve ali več koristnih mutaciji, ki med seboj tekmujejo za fiksacijo. To zakasni fiksacijo koristnih mutacij pri plazmidih ali pa celo vodi do izgube teh mutacije. Kljub temu pa je od plazmidov pričakovano, da stalno razporeja mutacije, ki tekmujejo med seboj, v isti plazmid, kar vpliva na plazmidno interferenco in posledično evolucijo plazmid-kodiranih lastnosti. Ker imajo plazmidne mutacije daljši čas fiksacije kot kromosomske fiksacije, to negativno vpliva na verjetnost vzpostavitve novih plazmidnih alelov. Po drugi strani pa to pomeni, da plazmidni predeli ostanejo polimorfni več bakterijskih generacij. Posledično plazmidi zagotavljajo vir stalnih genetskih variacij. Te omogočajo, da se pri okoljskih spremembah bakterijska populacija prilagodi z že obstoječimi mutacijami. Taka prilagoditev je hitrejša, kot če bi bilo potrebno uvajanje novih mutacij, kar poveča možnost, da se bakterijske populacije izognejo izumrtju, ki ga povzročijo nenadne okoljske spremembe, kot je na primer zdravljenje z antibiotikom. Ko se gen na kromosomu razvije do te mere, da pridobi novo funkcijo, izgubi svojo prvotno. Ta kompromis med starimi in novimi aktivnosti ima negativen vpliv, saj predstavlja omejitev pri evoluciji proteinov. Do kompromisov prihaja, ker so lahko mutacije, ki so koristne v enem okolju, v drugem lahko škodljive. Na primer, pri evoluciji odpornosti na antibiotike prevladujejo kompromisi, na račun katerih mutacija povzroči odpornost na nov antibiotik a se pri tem zmanjša aktivnost proti antibiotiku, na katerega je bila prvotno razvita rezistenca. Posledično, ko sta prisotna oba antibiotika hkrati ali izmenično, kompromisi omejujejo razvoj odpornosti na antibiotike. Če pa sta alela za rezistenco plazmidno-kodirana, soobstajata v celici na stotine bakterijskih generacij pod heteroplazmijo. S tem se razbremenijo omejitve, ki jih postavljajo kompromisi v razvoju odpornosti na antibiotike. Plazmidi so torej odlično ogrodje za razvoj novih funkcij, saj lahko ohranjajo genetsko raznolikost znotraj celice in na populacijski ravni. Poleg učinkov, ki so posledica tega, da je v celici prisotnih več kopij plazmida, lahko tudi druge lastnosti prispevajo k pospešitvi evolucije bakterij. Na primer med konjugacijo se plazmidi prenesejo kot enoverižne DNA, kar v bakteriji aktivira odziv na stres SOS. SOS odziv usklajuje izražanje večih genov, ki so vključeni v popravilo DNA in kontrolo celičnega cikla. Znano pa je tudi, da spodbujajo razvoj bakterij s povečanjem rekombinacije in mutageneze.
Zaključek
Vse raziskave kažejo na to, da se plazmidi razvijajo drugače kot kromosomi. Po eni strani plazmidi generirajo večjo raznolikost kot bakterijski kromosom, kar omogoča nastanek posebnih mehanizmov, ki omogočajo njihov razvoj in hrambo genetskih informacij čez več generacij. Po drugi strani pa lahko pojavi kot so genetska dominanca, plazmidna interferenca in porazdelitveni odmik omejijo evolucijski potencial plazmidov. Tako se je postavilo vprašanje ali se plazmidi razmnožujejo hitreje kot bakterijski kromosom? Veliko dokazov kaže na to, da se. Med njimi so to, da plazmidi pospešijo evolucijo, ko so selekcijski pritiski visoki, prav tako bodo plazmidi povečali količino koristnih mutacij le če so te dominantne. Plazmidi vsebujejo tudi veliko genov, ki so za bakterijskega gostitelja nepomembni, kar omogoča zmanjšanje selektivni pritisk in tako ohranitev genetske raznolikosti v evolucijsko pomembnem časovnem okvirju. Pomembna pa je tudi zmožnost rekombinacije, ki jim omogoča sobivanje z bakterijami z zelo različnimi genomi. Razumevanje mehanizmov, ki omogočajo evolucijo plazmidov je ključno za razumevanje velike raznolikosti bakterij in ekološke prednosti prokariontov.
Viri
1. Rodríguez-Beltrán, Jerónimo, Javier DelaFuente, Ricardo León-Sampedro, R. Craig MacLean, in Álvaro San Millán. „Beyond Horizontal Gene Transfer: The Role of Plasmids in Bacterial Evolution“. Nature Reviews Microbiology 19, št. 6 (junij 2021): 347–59. https://doi.org/10.1038/s41579-020-00497-1.
2. Halleran, Andrew D., Emanuel Flores-Bautista, in Richard M. Murray. „Quantitative Characterization of Random Partitioning in the Evolution of Plasmid-Encoded Traits“, 31. marec 2019. https://doi.org/10.1101/594879.
3. „Ponavljajoča se zaporedja v genomu - Wiki FKKT“. Pridobljeno 3. maj 2024. https://wiki.fkkt.uni-lj.si/index.php/Ponavljajo%C4%8Da_se_zaporedja_v_genomu.
4. Xu, Yuanyuan, in Zhanjun Li. „CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy“. Computational and Structural Biotechnology Journal 18 (8. september 2020): 2401–15. https://doi.org/10.1016/j.csbj.2020.08.031.