BIO2 Povzetki seminarjev: Difference between revisions

From Wiki FKKT
Jump to navigationJump to search
No edit summary
Line 141: Line 141:


Inzulin je majhen hormon, katerega glavna funkcija je regulacija metabolizma ogljikovih hidratov in maščob v telesu. Izloča se iz ß-celic pankreasa kot odgovor na povišano koncentracijo glukoze v krvi. Preko krvnega obtoka se prenese do tarčnih celic mišičnega in maščobnega tkiva, kjer se usede na specifičen tirozin-kinazni receptor INS-R. Preko zapletene kaskade spodbudi celico k absorbciji glukoze, s čimer je ohranjena normalna koncentracija glukoze v krvi tudi po zaužitem obroku.
Inzulin je majhen hormon, katerega glavna funkcija je regulacija metabolizma ogljikovih hidratov in maščob v telesu. Izloča se iz ß-celic pankreasa kot odgovor na povišano koncentracijo glukoze v krvi. Preko krvnega obtoka se prenese do tarčnih celic mišičnega in maščobnega tkiva, kjer se usede na specifičen tirozin-kinazni receptor INS-R. Preko zapletene kaskade spodbudi celico k absorbciji glukoze, s čimer je ohranjena normalna koncentracija glukoze v krvi tudi po zaužitem obroku.
IRS je inzulin receptor substrat, ki po fosforilaciji z INS-R aktivira PPIn 3-kinazo, ta pa pretvori membranski fofatidilinositolbisfosfat ali PtdIns(4,5)P2 v trisfosforiliran PtdIns(3,4,5)P3. Nastali produkt je nujno potreben za aktivacijo kinaze PDK1, ki pa fosforilira še eno (serin/treonin) kinazo Akt. (SLIKA)
IRS je inzulin receptor substrat, ki po fosforilaciji z INS-R aktivira PPIn 3-kinazo, ta pa pretvori membranski fofatidilinositolbisfosfat ali PtdIns(4,5)P2 v trisfosforiliran PtdIns(3,4,5)P3. Nastali produkt je nujno potreben za aktivacijo kinaze PDK1, ki pa fosforilira še eno (serin/treonin) kinazo Akt. (SLIKA)
Končni cilj te inzulin-stimulirane kaskade je transport glukoznega prenašalca iz citoplazme na plazmalemo. Glukozni transporter ali GLUT4 se prvotno nahaja v membrani intracelularnega kompartmenta, ob stimulaciji z inzulinom pa se le-ta prenese na plazmalemo in se z njo združi. GLUT je tako transportiran na zunanjo stran membrane, kjer lahko opravlja svojo funkcijo.
Končni cilj te inzulin-stimulirane kaskade je transport glukoznega prenašalca iz citoplazme na plazmalemo. Glukozni transporter ali GLUT4 se prvotno nahaja v membrani intracelularnega kompartmenta, ob stimulaciji z inzulinom pa se le-ta prenese na plazmalemo in se z njo združi. GLUT je tako transportiran na zunanjo stran membrane, kjer lahko opravlja svojo funkcijo.
Kljub dolgoletnim raziskovanjem te kaskade, pa je še vedno odprto vprašanje, kako in preko katerih molekul pa signal prepotuje od Akt do tega GLUT4 vsebovanega vezikla, oziroma kateri je tisti substrat Akt-a, ki vpliva na GLUT4 translokacijo do plazmaleme. Do sedaj so znanstveniki identificirali tri potencialne kandidate: AS160, PIKfyve in synip.
Kljub dolgoletnim raziskovanjem te kaskade, pa je še vedno odprto vprašanje, kako in preko katerih molekul pa signal prepotuje od Akt do tega GLUT4 vsebovanega vezikla, oziroma kateri je tisti substrat Akt-a, ki vpliva na GLUT4 translokacijo do plazmaleme. Do sedaj so znanstveniki identificirali tri potencialne kandidate: AS160, PIKfyve in synip.

Revision as of 21:49, 18 November 2010

Đorđe Dimitrijević: PLC regulacija: nastajajoči modeli molekularnih mehanizmov

Fosfoinozitol specifične fosfolipaze C so pogoste signalne komponente povezane z aktivacijo večina celičnih receptorjev.

Družine PLC so kompleksni, večdomenski proteini in skupaj pokrivajo širok spekter regulatornih interakcij, zajemajoč direktno vezavo na podenote G proteinov, majhne GTPaze iz Rho in Ras družin, receptorne in ne-receptorne tirozin- kinaze in lipidne komponente celičnih membran.

Nedavne strukturne določitve PLC komponent in njihovih kompleksov z regulatornimi proteini in direktne mehanistične študije, s prejšnjimi deli, so zagotovile temelje za predloge molekularnih mehanizmov, ki strogo regulirajo PLC aktivnost.

PLC encimi najdeni v evkariontih sestavljajo sorodno skupino proteinov, ki cepijo polarno skupino glavo fosfatidilinozitola 4,5 bisfostata ( PtdIns( 4,5)P2 )[1,2].

Najbolje dokumentirana posledica te reakcije in prvenstven celični signalni odziv je nastanek dveh sekundarnih obveščevalcev :

Inozitol 1,4,5-trifosfat ( Ins(1,4,5)P3), univerzalen kalcij-mobiliziran sekundaren obveščevalec, in diacilglicerol( DAG), aktivator več tipov efektorskih proteinov vključno z izooblikami protein- kinaz C.

Ti sekundarni obveščevalci zagotovijo skupen člen, od visoko specifičnih receptorjev za hormone, nevrotransmiterje, antigene, komponent zunajceličnega matriksa in rastnih faktorjev,do navzdol intracelularnih(znotrajceličnih) tarč.

S tem načinom prispevajo k regulaciji raznovrstnih bioloških funkcij kot so celično gibanje, fertilizacija in senzorna transdukcija.

Ena izmed pomembnih vlog različnih fosfoinozitidnih vrst je v usmerjanju proteina k posebnim sub-celičnim razdelkom za pomemben nadzor membranskega razvrščanja in celičnega gibanja.[3-5]

Povezava do originalnega članka

Aleksander Krajnc: Oligomerne oblike z G proteinom sklopljenih receptorjev (GPCR)

Oligomerizacija je poglavitna lastnost receptorjev na celični membrani, ki velja tudi za z G proteinom sklopljene receptorje (GPCR-je). GPCR-je so dolgo smatrali za monomerne enote. Kljub intenzivnim preučevanjem, razumevanje molekularnih funkcij in struktur še vedno ni čisto raziskano. Kot se je dokaz za združevanje receptorjev razvil iz eksperimentalnih celičnih linij v pomembne in vivo študije izoliranih kompleksov dimernega receptorja ter le-tega sklopljenega skupaj z G proteinom, je pričakovati, da bodo tudi strukturne osnove in funkcije oligomerizacije pri membranskem sporočanju kmalu pojasnjene. Kooperativna interakcija takšnih skupkov GPCR-jev pomembno vpliva na razširjanje signala skozi celično membrano in naprej do G proteinov. Obstoj oligomerizacije celičnih membranskih receptorjev je v celoti podkrepljena s termodinamskimi izračuni in izračuni za trajanje signala, da doseže različne kompartmente celice.

Model GPCR-ja obarvan po entropiji

Predvidevana oligomerizacija mesta GPCR-jev razreda B

Vito Frančič: Proteini WD40: središča v omrežju celičnih biokemijskih interakcij

Domene WD40 so beta propelerji, ki so večinoma sestavljeni iz sedmih WD ponovitev. Te ponovitve so kratki strukturni motivi sestavljeni iz približno 40 aminokislin in se pogosto končajo z dipeptidom triptofan-asparaginska kislina (W-D). Proteini, ki vsebujejo domene WD40, so velika družina in jih najdemo v vseh evkariontih. Njihove pomembne lastnosti so, da nimajo sposobnosti katalize, da večinoma opravljajo vlogo platform, na katerih se sestavljajo proteinski kompleksi, in da so močno zastopani v dosedaj raziskanih evkariontskih proteomih. Sodelujejo v mnogih pomembnih procesih, ki so nujni za preživetje celice, recimo signalna transdukcija, delitev celice, spremembe citoskeleta, kemotaksa, procesiranje RNA, … Domene WD40 so sposobne interagirati z mnogo različnimi tipi molekul in so zelo prilagodljive. Vse te lastnosti domen WD40 so najbolje razvidne iz primerov proteinov, ki vsebujejo te domene. Kompleks PRC2 (njegovi najbolj raziskani podenoti sta EED in RbAp46/48) igra pomembno vlogo pri utišanju gena Polycomb; proteini Seh1, Nup85, Sec13 in Nup145 igrajo pomembno vlogo pri sestavljanju plašča jedrnih por; na protein DDB1 deluje V-protein virusa SV5 ter s tem prepreči imunski odziv; kompleks DDB1-DDB2 sobeluje v prepoznavanju in odpravljanju napak na DNA, ki so jo poškodovali UV žarki.

Žan Caf-Feldin: Glikoliza: Zgolj bioenergetska vloga ali pot preživetja

V glavnih možganskih celicah nevronih in astrocitih poteka mnogo reakcij metabolizma. Raziskava se osredotoča na njihov odziv, ko v njih z NO zaustavimo mitohondrijsko dihanje, ki je eden od ključnih segmentov celičnega dihanja. Nevroni hitro po inhibiciji umrejo, medtem ko astrociti povečajo stopnjo glikolize in tako ohranijo mitohondrijski membranski potencial ter se izognejo apoptozi. Glavno vlogo pri povečanju glikolize igra encim 6-fosfofrukto-2-kinaze/fruktoze-2,6-bisfosfataze, izooblika 3 (PFKFB3), ki ga v nevronih primanjkuje saj se konstanto razgrajuje s pomočjo E3 ubikvintinske ligaze spodbujevalnega kompleksa anafaze/ciklosoma, (APC/C)– CDH1. PFKFB3 je odgovoren za produkcijo fruktoze-2,6-bisfosfata (F2,GP2), ki aktivira 6-fosfofrukto-1-kinazo (PFK1) in je neposredni glavni regulator glikolize. Za razliko od astrocitov, nevroni glukozo večinoma uporabljajo v fosfoglukonatni poti, ki regenerira reducirani glutation vendar ne proizvede zadostnega števila ATP, da bi lahko nadomestila količine dosežene brez inhibicije mitohondrijskega dihanja. Opazovanja so pokazala tudi, da bi lahko proteosomalni protein (APC/C)– CDH1 povezoval aktivacijo glikolize in celično razmnoževanje in reguliral proteine v ciklusu delitve celice.

Protein PFKFB3

Protein (APC/C)

Brigita Razboršek: Adhezijski GPCR-ji - Odkrivanje pomena novih receptorjev

GPCR, receptorji, povezani z G proteini, znani tudi kot 7TM, sestavljajo največjo družino površinskih celičnih receptorjev, ki jih najdemo v mnogoceličarskih proteomih. Receptorji zaznajo specifičen ligand, prenesejo signal v celico in v njej sprožijo ustrezen znotrajceličen odziv. GPCR-je lahko glede na sekvenčno homologijo razdelimo v šest razredov. Adhezijski GPCR-ji predstavljajo drugi največji razred. V človeškem telesu jih najdemo kar 30.

Adhezijske GPCR definira:

- dolg N-terminalni konec z več funkcionalnimi domenami (najdemo ga na zunajcelični strani),

- zelo zapletena genomska struktura z več introni in izrezovalnimi mesti,

- 7TM regija, ki nima jasnih podobnosti s 7TM regijami drugih GPCR-jev,

- GPCR proteolitično mesto, ki povezuje velike zunajcelične regije s 7TM.

Adhezijskim GPCR-jem njihova raznolika struktura omogoča opravljanje več nalog, ki so odvisne od tkiva in vrste celic, kjer se nahajajo. Pomembno vlogo imajo v imunskem odzivu, pri tumorogenezi in v razvojni biologiji, znanstveniki pa odkrivajo vedno več funkcij, ki jih opravljajo ti edinstveni receptorji.

Viri: 1. Yona, S., Lin, H., Siu, W. O., Gordon, S., Stacey M.: Adhesion-GPCRs: emerging roles for novel receptors. Cell press, 2008,Vol.33, No. 10, 491-500

2. Bjarnadóttir, T. K., Fredrikson, R., Schiçth, H. B.: The Adhesion GPCRs: A unique family of G protein-coupled receptors with important roles in both central and peripheral tissues. Cellular and Molecular Life Sciences , 2007, Vol. 64, 2104-2119

Tisa Primc: Apoptoza inducirana prek smrtnih receptorjev

Apoptoza ali programirana celična smrt je naraven in nujno potreben proces, ki poteka v vseh večceličnih organizmih. V procesu smrti se iz organizma odstranjujejo nepotrebne in potencialno škodljive celice. Glavno vlogo pri tem odigrajo encimi kaspaze, ki so pred sproženjem procesa v celici prisotni v obliki cimogenov prokaspaz. Aktivacijo lahko sprožijo znotraj- ali izvencelični signali. Za slednje poskrbijo T limfociti, ki prepoznajo poškodovane in z virusi okužene celice. V ta namen imajo na svojem površju t.i. smrt-inducirajoče ligande, ki se vežejo na smrtne receptorje na membranah nevarnih celic. Ta povezava povzroči na intracelularnih domenah receptorjev določene konformacijske spremembe, ki omogočijo vezavo različnih adapterskih molekul, na katere se nato vežejo iniciatorske prokaspaze. Kompleksu, ki pri tem nastane pravimo DISC (Death Inducing Signalling Complex). Občutljivost celice na apoptotske signale je v veliki meri odvisna od razmerja med pro- in anti-apoptotskimi proteini iz Bcl-2 družine. Pomembno vlogo pri procesu pa odigrajo tudi mitohondriji. Med procesom pride do naluknjanja njihove zunanje membrane, pri čemer se v citosol sprostijo številni pro-apoptotski proteini, med katerimi ima glavno vlogo citokrom C. Sproščeni proteini še dodatno ojačajo signalno pot. Kaskada biokemičnih reakcij privede do morfoloških sprememb: zaradi razbitja citoskeleta se celica skrči, na površini se pojavijo mehurčkasti izrastki, jedro in mitohondriji se razgradijo, DNA pa se razreže na krajše fragmente. V končni fazi apoptoze celica razpade na apoptotska telesca, ki jih nato fagocitirajo sosednje celice in celice požiralke.

Nataša Simonič: Botulin in tetanus nevrotoksin: struktura, delovanje in terapevtska uporaba

Botulin (BoNT)[1] je eden najbolj smrtonosnih naravnih strupov. BoNT (150kDa), ki ga proizvajajo anaerobne bakterije Clostridium botulinum [2], je zgrajen iz dveh polipeptidnih verig, lahke in težke, ki sta med seboj povezani z disulfidnim mostom. Je nevrotoksin, zavira sproščanje acetilholina v živčnomišičnih stikih in povzroči botulizem oz. mišično ohromelost. Sposobnost botulina za prekinjanje živčnega prenosa so v preteklosti izkoriščali v različne namene, npr. za zdravljenje očesnih obolenj. Danes je njegova uporaba močno razširjena, najdemo ga v botoksu, kot tudi pri zdravljenju aksilarne hiperhidroze (prekomerno potenje pod pazduhami).

Tetanus nevrotoksin (TeNT)[3] proizvajajo anaerobne bakterije Clostridium tetani [4]. Po zgradbi je podoben BonT, prav tako tudi po funkciji, tudi TeNT je nevrotoksin, ki inhibira sproščanje acetilholina. To privede do tetanusa, za katerega so značilni močni mišični krči.

Oba toksina uvrščamo med klostridijske toksine (CNT), saj spadata v isti rod. Mehanizem delovanja obeh nevrotoksinov je podoben, le da BoNT deluje na motornevrone, medtem ko TeNT na različne tipe nevronov.

Avtorji članka [5] so razpravljali o strukturi, mehanizmu delovanja in terapevstki uporabi teh dveh toksinov v medicini in farmaciji. Raziskovanja strukture in mehanizma delovanja BoNT in TeNT so razkrila njune odlike. Uporabili bi jih lahko za izdelavo boljših cepiv ter novih zdravil (npr. nebolezenski klostridiji v vlogi "dostavljalca" protirakavih snovi v tumorske celice).

Za lažjo predstavo kako delujeta BoNT in TeNT si lahko ogledate kratek filmček [6].

Laura Ogrin: Kooperativni in nekooperativni ionski kanali CNG

CNG kanali so ionski prenašalni kanali, katerih delovanje je regulirano z molekulami cNMP. Njihove funkcije v celicah so zelo različne. Običajni CNG so po zgradbi heterotetrameri. Vsaka podenota ima posebno CNBD strukturo, na kateri je vezavno mesto za cNMP. Za odprtje takega kanala je potrebnih več molekul liganda. Mehanizem je kooperativen in poteka prek alosteričnih konformacij. V raziskavi[7] so natančneje preučili zgradbo in delovanje ionskega CNG kanala iz bakterije Mesorhizobium loti (mlCNG) in ionskega kanala iz celic morskega ježka (CNGK). Kanali mlCNG so homotetrameri. Štiri enake podenote so po zgradbi podobne podenotam klasičnih CNG kanalov. CNGK kanali pa so psevdotetrameri, kar pomeni, da gre za eno daljšo polipeptidno verigo, ki pa je na videz organizirana v štiri različne podenote. Tudi te podenote imajo veliko podobnosti s tistimi v klasičnih CNG kanalih. Kljub podobnostim pa se mlCNG in CNGK razlikujejo od klasičnih CNG kanalov in sicer je bistvena razlika v tem, da mlCNG in CNGK ne delujejo kooperativno, za odprtje kanala pa je potrebna samo ena molekula liganda (cNMP). Do te razlike je najverjetneje prišlo zaradi prilagajanja mehanizmov razmeram v okolju. Tako najdemo v okolju z nizko koncentracijo cNMP-ja pretežno kanale katerih delovanje je odvisno od ene molekule, medtem ko so v okolju z visoko koncentracijo liganda v prednosti kanali s kooperativnim mehanizmom. S preučevanjem strukture so v raziskavi pojasnili tudi vzroke za selektivnost kanalov za določen ligand. Tako so mlCNG cAMP selektivni, medtem ko CNGK vežejo molekulo cGMP.


Žan Železnik: Biokemijska in strukturna osnova za trans-v-cis izomerizacijo retinoidov v kemiji vida

Pri pretvorbi svetlobnih dražljajev v elektrokemijski signal se 11-cis-retinal pretvarja v all-trans-retinal. Da je ta proces nemoten, se mora all-trans-retinal nenehno regenerirati nazaj v 11-cis obliko. To poteka v vizualnem ciklu, v fotoreceptorskih celicah ter v celicah retinalskega pigmentnega epitela. All-trans-retinal se najprej transportira v celice epitela, in se tam z encimom LRAT esterificira. All-trans-retinil estri so substrat za RPE65, ki katalizira endotermno izomerizacijo all-trans-retinoidov v 11-cis obliko. Produkt, 11-cis-retinol je v večih stopnjah s pomočjo RDHjev oksidiran do zadnjega metaboličnega koraka retinoidnega cikla - 11-cis-retinala. 11-cis-retinal se nato transportira nazaj v fotoreceptorske celice, kar zaključi cikel. Toda čeprav so koraki te metabolične poti znani, pa mehanizmi nekaterih reakcij še vedno niso raziskani.

Špela Podjed: Strukturne lastnosti RNA-stikal, ki vežejo metabolite

RNA-stikala so elementi neprevedenega dela mRNA, ki so sposobni vezave majhnih metabolitov. Do sedaj so jih odkrili že več kot dvajset, še vedno pa niso razkrili vseh lastnosti njihovih struktur. Najprej so jih odkrili in vitro. Ugotovili so, da naravni in umetni aptameri (del RNA, ki veže metabolit) uporabljajo skupne načine za vezavo liganda. Oboji uporabljajo parjenje baz, zlaganje aromatov in stabilizacijo z kovinskimi ioni. Naravni aptameri so večji in ligand s parjenjem baz in terciarnimi interakcijami med oddaljenimi deli vijačnice objamejo z vseh koncev. To zagotavlja veliko afiniteto RNA-stikala do liganda. Naravni aptameri so veliko bolj selektivni in specifični do liganda od njihovih umetnih modelov. Slednji so strukturno namreč preprostejši, vsebujejo manj nukleotidov in tako ne morejo dobro skriti metabolita v notranjost strukture. Poleg tega so odkrili tudi RNA-stikalo, ki je hkrati tudi ribocim, to je glmS [8], ki se avtokatalitično cepi ob vezavi metabolita glukozamin-6-fosfata. RNA-stikala so izredno pomembna, saj so zaradi njihove narave zelo primerna za manipulacijo izražanja genov in zaznavanje majhnih metabolitov. V človeku jih do sedaj še niso odkrili, zato so nadvse primerna za razvoj zdravil proti bakterijam.

Nejc Perme: Mehanizmi zaznavanja glukoze v evkariontskih celicah

Glukoza je zelo pomemben vir ogljika in energije za evkariontske celice. Zato so razvile kompleksne mehanizme za natančno zaznavanje sprememb v koncentraciji. V raziskavah, ki so potekale v kvasovkah, so odkrili tri mehanizme za zaznavanje glukoze:

1) Kot zaznavna molekula deluje sama heksokinaza 2. Izkazalo se je, da se heksokinaza 2 lahko nahaja tudi v jedru, kjer neposredno interagira s transkripcijskimi faktorji (npr. Mig1), ki kontrolirajo ekspresijo genov. Da se heksokinaza pomakne v jedro pa mora prej prejeti signal od glukoze.

2) Zaznavni molekuli sta dva proteina v membrani (Rgt2 in Snf3), ki sta homologna transportnim proteinom glukoze. Med seboj se razlikujeta v tem, da se Snf3 odzove na majhne koncentracije glukoze, Rgt2 pa na velike. Odzoveta se na enak način kot heksokinaza z represijo in ekspresijo nekaterih genov (pri tem ne vstopata v jedro)

3) Glukoza se zaznava z GPCR sistemom. Alfa-podenota se odcepi in aktivira adenilat ciklazo. Da postane adenilat ciklaza aktivna je potrebna še glukoza-6-fosfat.

Kako te mehanizmi zaznajo glukozo še ni znano, dokazano pa je, da imajo molekule pomembne vloge pri signalizaciji saj brez njih ne pride do celičnega odziva. Raziskovanje mehanizmov zaznavanja je šele v začetnih fazah, zato lahko pričakujemo, da bodo nadaljnje raziskave uspele razložiti kako naše celice zaznajo glukozo.

Urška Žbogar: Multifunkcionalnost glikolitičnih encimov

Glikoliza je biokemijska pot, ki se je razvila pod anaerobnimi pogoji in v kateri se 1 molekula glukoze pretvori v 2 molekuli piruvata. Ta pot je regulirana s številnimi encimi, za katere so novejše študije pokazale, da so bolj zapleteni, multi-funkcijski proteini, ne pa zgolj enostavne komponente glikolitične poti. Nekateri encimi opravljajo dodatne funkcije, in sicer v regulaciji transkripcije: heksokinaza (HK)-2, laktat dehidrogenaza A (LDH-A), gliceraldehid-3-fosfat dehidrogenaza (GAPD) in enolaza (ENO)-1; regulaciji apoptoze: glukokinaza, HK in GAPD; stimulaciji celične motilitete: glukoza-6-fosfat izomeraza

Glikoliza je glavni vir proizvodnje energije v pogojih, ko primanjkuje kisika zato je izražanje genov, ki kodirajo glikolitične encime pomembno za prilagoditev na hipoksijo (pomanjkanje kisika). Odziv na hipoksijo je posredovan s transkripcijskim faktorjem HIF-1, ki veže cis-regulatorne elemente za aktivacijo genov za odziv na hipoksijo, vključno s tistimi, ki kodirajo glikolitične encime. Rakave celice pa opravljajo glikolizo s povišano produkcijo laktata kljub prisotnosti zadostne količine kisika. Odvisnost rakavih celic od glikolize se kaže v spremenjenih tumornih mitohondrijih, ki niso sposobni vzdrževati normalnega oksidativnega metabolizma.

V primeru heksokinaze je glikolizna pot povezana z mitohondrijsko oksidativno fosforilacijo in apoptozo (lokalizacija v mitohondriju). Multifunkcionalnost teh encimov dokazuje tudi lokalizacija glikolitičnih encimov v jedru, kjer sodelujejo kot komponente transkripcijskega koaktivatorja (LDH-A in GAPD) ali represorja (ENO1), medtem ko sama glikoliza poteka izključno v citoplazmi.

Urban Bezeljak: Na novo odkrite skrivnosti aktomiozinskega delovnega takta

Raziskave na primeru biokemijskega aktomiozinskega motorja[9] so postregle z nekaterimi dognanji, ki so in še bodo pomagali razumeti ostale fiziološke procese od celičnega premikanja do celičnega signaliziranja. Tako kot pri avtomobilskem motorju z notranjim izgorevanjem lahko tudi pri motornem proteinu miozinu definiramo „delovni takt“, korak kjer pride do nastanka mehanske moči. Delovni takt aktomiozina je ključni trenutek v miozinskem ATPaznem ciklu, v katerem služi hidroliza ATP kot vir energije in konformacijskih sprememb, ki povzročijo premik mišičnih filamentov.

Molekula miozina je sestavljena iz glave (motorne domene), vratu (vzvoda) in dolgega repa, ki se prepleta ter tvori debel mišični filament. Na motorni domeni najdemo aktinske vezavne regije, nukleotidno vezavno mesto ter elemente, ki posredujejo spremembe v nukleotidnem žepu do vzvoda oz. do vezavnih mest za aktin. Ko je na miozinsko glavo vezana molekula ATP, sta aktin in miozin razdružena, ko pa pride do hidrolize, se zaradi nastalih konformacijskih sprememb glava lahko veže na aktin, vzvodna ročica miozina pa v koraku delovnega takta zamahne in premakne filamenta. Sprostitev produktov hidrolize in ponovna vezava ATP označujeta začetek novega mehanokemičnega cikla. Odločilen pomen pri izvedbi učinkovitega miozinskega zamaha igra t.i. aktnska aktivacija, ki onemogoči nastanek jalovega zamaha, pri katerem aktin in miozin nista povezana. Mehanizem preusmeritve reakcijskega pretoka na učinkovito izvedbo biološke funkcije imenujemo kinetična izbira reakcijske poti. Zanjo je značilno, da sistem ubere termodinamsko manj ugodno, a hitrejšo reakcijsko pot, saj je ugodnejša (v našem primeru jalov zamah) kinetično ovirana.

Margareta Žlajpah: Regulacija HIF-1 proteina

"Hypoxia-inducible factors" ali drugače HIF proteini so skupina heterodimernih transkripcijskih faktorjev, ki se odzovejo na pomankanje kisika na celični ravni. Izmed vseh je HIF-1 protein najpomembnejši, saj je HIF-1 proteini tisi, ki je odgovoren za aktivacijo genov, ki kontrolirajo metabolne poti v takem okolju. Odgovor na "hypoxio" vključuje preklop iz aerobnega na anaerobni metabolizem in izražanje proteinov, ki regulirajo celično preživetje ali njeno smrt - apoptozo.

Pomankanje kisika v celici je značilno tako za popolnoma zdrave bolnike (posledica višinskih treningov ali visokih alpinističnih vzponov) kot tudi za tiste, ki so zboleli za rakom. Ena izmed redkih autosomnih bolezni raka je tudi von Hippel Lindau bolezen. V kombinaciji z HIF-1α proteinom, naj bi se VHL gen dekativiral in s tem dovolil rast dobro ožiljenih tumorjev v ledvicah, očesni mrežnici in centralnem živčnem sistemu.

Sam VHL protein (pVHL) pa ima tudi pomembno vlogo pri razgradnji HIF proteinov. Do sedaj je znanih nekaj različnih pVHL odvisnih mehanizmov po katerih se HIF protein razgradi, odkrili pa so tudi pVHL neodvisne mehanizme razgradnje. Po drugi strani pa je translacija še dokaj neodkrito področje biokemije, na katerem se iz dneva v dan pojavljajo nove ideje vendar natančnega mehanizma sinteze HIF proteina še ne poznamo.

Cilj znanstvenikov je dodobra spoznati regulacijo tako sinteze kot tudi razgradnje HIF-1 proteina, saj bi z novimi dognanji na tem področju bili korak bližje izdelavi zdravil proti raku, ter razumevanju odziva telesa na pomankanje kisika.

Nives Naraglav: Protein kinaze: evolucija dinamično reguliranih proteinov

Protein kinaze (PK) so v celicah zelo raznoliki in pogosti encimi, ki z odcepom fosfata iz molekule ATP, fosforilirajo ostale proteine.

Čeprav so si PK v neaktivne stanju med seboj zelo različne, pa obstajajo elementi, ki se pogosteje ponavljajo v aktivnih oblikah več evkariontskih protein kinaz. Takšni elementi so katalitična zanka, aktivacijski segment, GHI domena in F heliks. Da je encim aktiven, morajo biti ti elementi v medsebojni legi, ki omogoča tvorjenje regulatornega in katalitičnega hidrofobnega področja, ki nastaneta z interakcijami med seboj oddaljenih aminokislinskih ostankov.

Med preučevanjem evkariontskih PK in njihovih skupnih predhodnikov so znanstveniki ugotovili, da so prvi tekom evolucije razvili dinamičen način regulacije, ki je vezana na GHI domeno in aktivacijski segment, ki pa jih predhodniki nimajo. V dani raziskavi je podrobneje raziskano aktivno povezovanje elementov prek konformacijskih sprememb ter pomen različnih struktur pri aktivaciji in regulaciji evkariontskih PK.

Razumevanje načina povezovanja katalitičnega ogrodja, ki sestoji iz F heliksa in hidrofobnih področij, s preostali elementi katalitične podenote, je izhodišče za raziskovanje nepravilnosti, drugačnosti v delovanju kinaz.

Maruša Bratuš: Mitohondriji kot jih ne poznamo

Vsi poznamo mitohondrije, ki s pomočjo kisika in piruvat dehidrogenaze oksidativno dekarboksilirajo piruvat do acetil-koencima A, ki je potem v reakcijah Krebsovega cikla dokončno oksidiran do ogljikovega dioksida, pri čemer nastaja energija v obliki ATP, FADH2 in NADH. Večina energije pa potem pride iz oksidativne fosforilacije, ko so elektroni iz NADH preko verige prenosa elektronov prenešeni do kisika, prenos protonov, ki pri tem tudi poteka, pa poganja ATP sintazo. Poznamo pa tudi veliko organizmov, ki preživijo v okolju z zelo malo ali celo brez kisika. Kako preživijo? Njihovi mitohondriji kot končni akceptor elektronov ne potrebujejo kisika, saj uporabijo druge molekule, ki so na voljo, na primer nitrate iz okolja ali endogeno proizveden fumarat. Produkt njihovega dihanja zato ni voda, temveč nitriti ali sukcinat. Pri tem je pri eukariontih pomemben encim fumarat reduktaza, ki je strukturno soroden aerobnemu encimu sukcinat dehidrogenaza, funkcijo pa ima tako kot fumarat reduktazni kompleksi v prokariontih. Posebna vrsta mitohondrijev pa lahko kot donorje elektronov v sintezi ATP uporablja tudi anorganske sulfide. Za razlago raznolikosti mitohondrijev obstajata dve teoriji. Obe pa vključujeta možnost evolucijskih modifikacij podedovanih ali pridobljenih genov, ki naj bi izvirali neposredno iz genoma prednikov mitohondrijev, ki je bil najverjetneje individualna anaerobna eubakterija.


Sabina Kolar: Povezava med signalom inzulina in glukoznim prenašalcem

Inzulin je majhen hormon, katerega glavna funkcija je regulacija metabolizma ogljikovih hidratov in maščob v telesu. Izloča se iz ß-celic pankreasa kot odgovor na povišano koncentracijo glukoze v krvi. Preko krvnega obtoka se prenese do tarčnih celic mišičnega in maščobnega tkiva, kjer se usede na specifičen tirozin-kinazni receptor INS-R. Preko zapletene kaskade spodbudi celico k absorbciji glukoze, s čimer je ohranjena normalna koncentracija glukoze v krvi tudi po zaužitem obroku.

IRS je inzulin receptor substrat, ki po fosforilaciji z INS-R aktivira PPIn 3-kinazo, ta pa pretvori membranski fofatidilinositolbisfosfat ali PtdIns(4,5)P2 v trisfosforiliran PtdIns(3,4,5)P3. Nastali produkt je nujno potreben za aktivacijo kinaze PDK1, ki pa fosforilira še eno (serin/treonin) kinazo Akt. (SLIKA)

Končni cilj te inzulin-stimulirane kaskade je transport glukoznega prenašalca iz citoplazme na plazmalemo. Glukozni transporter ali GLUT4 se prvotno nahaja v membrani intracelularnega kompartmenta, ob stimulaciji z inzulinom pa se le-ta prenese na plazmalemo in se z njo združi. GLUT je tako transportiran na zunanjo stran membrane, kjer lahko opravlja svojo funkcijo.

Kljub dolgoletnim raziskovanjem te kaskade, pa je še vedno odprto vprašanje, kako in preko katerih molekul pa signal prepotuje od Akt do tega GLUT4 vsebovanega vezikla, oziroma kateri je tisti substrat Akt-a, ki vpliva na GLUT4 translokacijo do plazmaleme. Do sedaj so znanstveniki identificirali tri potencialne kandidate: AS160, PIKfyve in synip.