MBT seminarji 2021: Difference between revisions

From Wiki FKKT
Jump to navigationJump to search
No edit summary
No edit summary
 
(45 intermediate revisions by 18 users not shown)
Line 33: Line 33:
'''Nizkomolekularni biotehnološki produkti'''<br>
'''Nizkomolekularni biotehnološki produkti'''<br>
# Fermentative N-Methylanthranilate Production by Engineered ''Corynebacterium glutamicum''. (T. Walter ''et. al.''; Microorganisms 8(6), 2020; https://doi.org/10.3390/microorganisms8060866). [[Fermentativna proizvodnja N-metilantranilata z inženirsko spremenjeno Corynebacterium glutamicum]]. Saša Slabe (14.4.)
# Fermentative N-Methylanthranilate Production by Engineered ''Corynebacterium glutamicum''. (T. Walter ''et. al.''; Microorganisms 8(6), 2020; https://doi.org/10.3390/microorganisms8060866). [[Fermentativna proizvodnja N-metilantranilata z inženirsko spremenjeno Corynebacterium glutamicum]]. Saša Slabe (14.4.)
# Luka Gnidovec (15.4.)
# Efficient Biosynthesis of Vanillin from Isoeugenol by Recombinant Isoeugenol Monooxygenase from ''Pseudomonas nitroreducens'' Jin1. (Wang Q, Wu X, Lu X, He Y, Ma B, Xu Y. Efficient Biosynthesis of Vanillin from Isoeugenol by Recombinant Isoeugenol Monooxygenase from Pseudomonas nitroreducens Jin1. Appl Biochem Biotechnol. 2021:1116-1128. doi:10.1007/s12010-020-03478-5). [[Učinkovita biosinteza vanilina iz izoevgenola z uporabo rekombinantne izoevgenol monooksigenaze Jin1 iz bakterije Pseudomonas nitroreducens]]. Luka Gnidovec (15.4.)
# One-pot production of butyl butyrate from glucose using a cognate “diamond-shaped” ''E. coli'' consortium (J. P. Sinumvayo "et. al"; Bioresources and Bioprocessing 8, 2021; https://bioresourcesbioprocessing.springeropen.com/articles/10.1186/s40643-021-00372-8#Sec9). [[Proizvodnja butil butirata iz glukoze z uporabo "diamantnega" konzorcija E. coli]] Liza Ulčakar (15.4.)
# One-pot production of butyl butyrate from glucose using a cognate “diamond-shaped” ''E. coli'' consortium (J. P. Sinumvayo "et. al"; Bioresources and Bioprocessing 8, 2021; https://bioresourcesbioprocessing.springeropen.com/articles/10.1186/s40643-021-00372-8#Sec9). [[Proizvodnja butil butirata iz glukoze z uporabo "diamantnega" konzorcija E. coli]] Liza Ulčakar (15.4.)


'''Biotehnološki polimeri'''<br>
'''Biotehnološki polimeri'''<br>
# Anže Karlek (21.4.)
# Biotechnologically produced fucosylated oligosaccharides inhibit the binding of human noroviruses to their natural receptors (S. M. Derya et al., “Biotechnologically produced fucosylated oligosaccharides inhibit the binding of human noroviruses to their natural receptors,” ''J. Biotechnol.'', vol. 318, no. April, pp. 31–38, 2020, doi: 10.1016/j.jbiotec.2020.05.001). [[Inhibicija vezave humanega norovirusa na naravni receptor z biotehnološko proizvedenimi fukoziliranimi oligosaharidi]] Anže Karlek (21.4.)
# Ana Maklin (22.4.)
# Complete biosynthesis of a sulfated chondroitin in ''Escherichia coli'' (Badri, A., ''et al''; Nature communications 12 (2021); https://doi.org/10.1038/s41467-021-21692-5). [[Popolna biosinteza hondroitin sulfata v E. coli]] Ana Maklin (22.4.)  
# Urban Hribar (22.4.)
# Optimization of cultivation medium and cyclic fed-batch fermentation strategy for enhanced polyhydroxyalkanoate production by Bacillus thuringiensis using a glucose-rich hydrolyzate (Singh et al. Bioresour. Bioprocess. (2021) 8:11, https://doi.org/10.1186/s40643-021-00361-x) [[Optimizacija fermentacijske proizvodnje PHA-bioplastike z b. thuringiensis in z glukozo bogatimi hidrolizati]] Urban Hribar (22.4.)


'''Biotehnološko pridobljeni encimi'''<br>
'''Biotehnološko pridobljeni encimi'''<br>
# Urška Fajdiga (5.5.)
# Engineering a carboxypeptidase from ''Aspergillus niger'' M00988 by mutation to increase its ability in high Fischer ratio oligopeptide preparation (Xiong K., Liu J., Wang X., Sun B., Zhang Y., Zhao Z., Pei P., & Li X.; Journal of Biotechnology, 330, 1–8, 2021, https://doi.org/10.1016/j.jbiotec.2021.02.015). [[Priprava karboksipeptidaze iz glive Aspergillus niger M00988 za izboljšanje priprave oligopeptidov z visokim Fischerjevim razmerjem]] Urška Fajdiga (5.5.)
# Mirsad Mešić (6.5.)
# Cell-Based High-Throughput Screening Protocol for Discovering Antiviral Inhibitors Against SARS-COV-2 Main Protease (3CLpro) (Rothan, H.A., Teoh, T.C; Mol Biotechnol 63, 240–248 (2021); https://doi.org/10.1007/s12033-021-00299-7) [[Visoko zmogljiv presejalni protokol na osnovi celic za raziskovanje antivirusnih inhibitorjev proti Sars-Cov-2 glavni proteazi (3CLpro)]] Mirsad Mešić (6.5.)
# Martina Lokar (6.5.)
# A novel cold-active type I pullulanase from a hot-spring metagenome for effective debranching and production of resistant starch (M. Thakur ''et al''.; Bioresource Technology 320, 2021; https://doi.org/10.1016/j.biortech.2020.124288). [[Pri nizkih temperaturah aktivna pululanaza tipa I iz metagenoma vročih vrelcev omogoča učinkovito klestenje in proizvodnjo odpornega škroba]] Martina Lokar (6.5.)


'''Metabolno inženirstvo v biotehnologiji'''<br>
'''Metabolno inženirstvo v biotehnologiji'''<br>
# Jerneja Nimac (12.5.)
# Production of Tyrian purple indigoid dye from tryptophan in ''Escherichia coli''  (J. Lee ''et al.''; Nat. Chem. Biol. 17, 2021; https://doi.org/10.1038/s41589-020-00684-4). [http://wiki.fkkt.uni-lj.si/index.php/Proizvodnja_%C5%A1krlatnega_indigoidnega_barvila_iz_triptofana_v_bakteriji_Escherichia_coli Proizvodnja škrlatnega indigoidnega barvila iz triptofana v bakteriji ''Escherichia coli''] Jerneja Nimac (12.5.)
# Urška Pečarič Strnad (12.5.)
# Development of ''Pseudomonas asiatica'' as a host for the production of 3-hydroxypropionic acid from glycerol (T. Thi Nguyen et al., Bioresource Technology, vol. 329, 2021; https://doi.org/10.1016/j.biortech.2021.124867). [[Razvoj gostiteljskega organizma Pseudomonas asiatica za proizvodnjo 3-hidroksipropionske kisline iz glicerola]] Urška Pečarič Strnad (12.5.)
# Klementina Polanec (13.5.)
# Generation of an engineered food-grade ''Lactococcus lactis'' strain for production of an antimicrobial peptide: ''in vitro'' and ''in silico'' evaluation (A. Tanhaeian ''et. al''; BMC Biotechnol. 20(1), 2020; https://doi.org/10.1186/s12896-020-00612-3). [[Priprava in ovrednotenje novega seva bakterij Lactococcus lactis za proizvodnjo protimikrobnega peptida]]. Klementina Polanec (13.5.)
# Ernestina Lavrih (13.5.)
# Metabolic engineering of ''E. coli'' for producing phloroglucinol from acetate (S. Yu et. al; Applied Microbiology and Biotechnology. 2020; https://doi.org/10.1007/s00253-020-10591-2). [[Metabolno inženirstvo bakterije Escherichia coli za pridobivanje floroglucinola iz acetata]]. Ernestina Lavrih (13.5.)


'''Biomasa in biogoriva'''<br>
'''Biomasa in biogoriva'''<br>
# Željka Erić (19.5.)
# Green Deep Eutectic Solvents for ''Microwave-Assisted Biomass'' Delignification and Valorisation (Grillo G. ''et al.''; Molecules 2021; https://www.mdpi.com/1420-3049/26/4/798/htm) [[Zelena globoka evtektična topila za delignifikacijo in valorizacijo biomase s pomočjo mikrovalov]]. Željka Erić (19.5.)
# Karin Dobravc Škof (20.5.)
# Incorporating a molecular antenna in diatom microalgae cells enhances photosynthesis (Leone, G., De la Cruz Valbuena, G., Cicco, S.R. ''et al.''; Sci Rep 11, 2021; https://www.nature.com/articles/s41598-021-84690-z#Sec10) [[Vključevanje molekularne antene v celice mikroskopsko majhnih kremenastih alg (diatomej) za izboljšanje fotosintetske učinkovitosti]]. Karin Dobravc Škof (20.5.)
# Katja Doberšek (20.5.)
# Integrated cascade biorefinery processes for the production of single cell oil by ''Lipomyces starkeyi'' from ''Arundo donax L.'' hydrolysates (Di Fidio N ''et al.''; ''Bioresour. Tecnhol.'', vol.325, p.124635, Apr. 2021.; https://doi.org/10.1016/j.biortech.2020.124635). [[Integrirana procesa biorafinerijske proizvodnje znotrajceličnih založnih lipidov iz Arundo donax L. v Lipomyces starkeyi]] . Katja Doberšek (20.5.)


'''Okoljski vidiki biotehnologije in bioremediacija'''<br>
'''Okoljski vidiki biotehnologije in bioremediacija'''<br>
# Almina Tahirović (26.5.)
# HriGFP Novel Flourescent Protein: Expression and Applications (Saeed, S. ''et al.'';  Molecular Biotechnology. 2020; https://link.springer.com/article/10.1007/s12033-020-00243-1) [[ HriGFP fluorescentni protein: Izraz in aplikacije]].  Almina Tahirović (26.5.)
# Eva Keber (27.5.)
# An extracellular lipase from Amycolatopsis mediterannei is a cutinase with plastic degrading activity (T. Yeqi; Computational and Structural Biotechnology Journal 19; 2021, https://doi.org/10.1016/j.csbj.2021.01.019 ) [[ Izvencelična lipaza iz Amycolatopsis Mediterannei je kutinaza z možnostjo razgradnje plastike.]] Eva Keber (27.05.)
# Nina Lukančič (27.5.)
# Identifying environmental hotspots and improvement strategies of vanillin production with life cycle assessment (Y. Zhao et. al; Science of the total environment, 769, 2021; https://doi.org/10.1016/j.scitotenv.2020.144771 ) [[ Identifikacija okoljskih žarišč in strategij za izboljšanje proizvodnje vanilina z oceno življenjskega cikla. ]] Nina Lukančič (27.5)

Latest revision as of 10:51, 27 May 2021

Seminarji iz Molekularne biotehnologije so letos organizirani tako, da vsak študent (praviloma v paru, lahko pa tudi samostojno) obdela temo s področja cepiv proti virusu SARS-CoV-2 in o tem pripravi kratek poljudno napisan povzetek. Ta del seminarjev je predstavljen na ločeni strani. V drugem delu vsak študent predstavi nek raziskovalni dosežek s širšega področja molekularne biotehnologije. Seznam tem in predstavitev za študijsko leto 2020/21 je predstavljen tu.

Povzetke morate objaviti do torka do polnoči v tednu, ko imate seminar (v četrtek). Angleški naslov prevedite tudi v slovenščino - to bo naslov povzetka, ki ga objavite na posebni strani, tako kot so to naredili kolegi pred vami (oz. predlani).

Način vnosa:

The importance of Arabidopsis glutathione peroxidase 8 for protecting Arabidopsis plant and E. coli cells against oxidative stress (A. Gaber; GM Crops & Food 5(1), 2014; http://dx.doi.org/10.4161/gmcr.26979) Pomen glutation peroksidaze 8 iz repnjakovca za zaščito rastline Arabidopsis thaliana in bakterije Escherichia coli pred oksidativnim stresom. Janez Novak (28.2.)
(slovenski naslov povežite z novo stranjo, na kateri bo povzetek)



Naslovi odobrenih člankov po temah:

Farmacevtsko pomembni proteini

  1. Development of Antibody-Fragment-Producing Rice for Neutralization of Human Norovirus (A. Sasou et. al; Frontiers in Plant Science 12, 2021; https://doi.org/10.3389/fpls.2021.639953). Proizvodnja riža za sintezo fragmentov protiteles proti humanemu norovirusu. Mateja Žvipelj (11.3.)
  2. A New Plant Expression System for Producing Pharmaceutical Proteins (N. Abd-Aziz et. al; Molecular Biotechnology 62, 2020; https://doi.org/10.1007/s12033-020-00242-2). Razvoj ekspresijskega sistema za proizvodnjo farmacevtskih proteinov v rastlini Mucuna bracteata. Jernej Imperl (18.3.)
  3. Development of a Recombinant Monospecific Anti-PLGF Bivalent Nanobody and Evaluation of it in Angiogenesis Modulation (A. Nikooharf "et all"; Molecular Biotechnology 62, 2020; https://link.springer.com/article/10.1007/s12033-020-00275-7#additional-information) Razvoj rekombinantnih monospecifičnih bivalentnih nanoteles proti PLGF-u. Nika Zaveršek (18.3.)

Cepiva

  1. Development of a DNA Vaccine for Melanoma Metastasis by Inhalation Based on an Analysis of Transgene Expression Characteristics of Naked pDNA and a Ternary Complex in Mouse Lung Tissues (Kodama et.al;Pharmaceutics 12,2020; https://www.mdpi.com/1999-4923/12/6/540#framed_div_cited_count) Razvoj DNA cepiva proti metastazam melanoma z vdihavanjem na podlagi analize značilnosti transgene ekspresije gole pDNA in trojni kompleks v mišjem pljučnem tkivu. Paula Horvat (25.3.)
  2. An AMA1/MSP119 Adjuvanted Malaria Transplastomic Plant‑Based Vaccine Induces Immune Responses in Test Animals (Evelia M. Milán‑Noris et. al; Molecular Biotechnology 62, 2020; https://doi.org/10.1007/s12033-020-00271-x) V rastlinah proizvedeno transplastomsko antimalarijsko cepivo z AMA1/MSP119 in dodanim adjuvansom inducira imunski odziv v testnih živalih. Neža Pavko (25.3.)

Gensko spremenjene rastline

  1. A wheat cysteine-rich receptor-like kinase confers broad-spectrum resistance against Septoria tritici blotch (C. Saintenac et al.; Nat. Commun. 12, 2021, https://doi.org/10.1038/s41467-020-20685-0). Receptorju podobna kinaza bogata s cisteini, pšenici daje odpornost proti širokemu spektru pegavosti Septoria tritici. Andrej Race (7.4.)
  2. RNAi silenced ζ-carotene desaturase developed variegated tomato transformants with increased phytoene content (M. A. Babu et. al; Plant Growth Regul. 93, 2021; https://doi.org/10.1007/s10725-020-00678-1). Vpliv utišanja ζ-karoten desaturaze na vsebnost karotenoidov v gensko spremenjenih paradižnikih. Peter Škrinjar (7.4.)

Gensko spremenjene živali in celične linije

  1. Engineering carotenoid production in mammalian cells for nutritionally enhanced cell-cultured foods (A. J. Stout "et. al"; Metabolic Engineering 62, 2020; https://doi.org/10.1016/j.ymben.2020.07.011). Razvoj proizvodnje karotenoidov v sesalskih celicah za prehransko izboljšano celično pridobljeno meso. Urša Lovše (8.4.)
  2. Efficient photoactivatable Dre recombinase for cell type-specific spatiotemporal control of genome engineering in the mouse (H. Li et. al; Proc. Natl. Acad. Sci. U. S. A. 117(52), 2021; https://doi.org/10.1073/pnas.2003991117). Priprava fotoinducibilne rekombinaze Dre kot orodje za prostorsko in časovno odvisno urejanje genoma v specifičnih mišjih celicah. Matija Ruparčič (8.4.)

Nizkomolekularni biotehnološki produkti

  1. Fermentative N-Methylanthranilate Production by Engineered Corynebacterium glutamicum. (T. Walter et. al.; Microorganisms 8(6), 2020; https://doi.org/10.3390/microorganisms8060866). Fermentativna proizvodnja N-metilantranilata z inženirsko spremenjeno Corynebacterium glutamicum. Saša Slabe (14.4.)
  2. Efficient Biosynthesis of Vanillin from Isoeugenol by Recombinant Isoeugenol Monooxygenase from Pseudomonas nitroreducens Jin1. (Wang Q, Wu X, Lu X, He Y, Ma B, Xu Y. Efficient Biosynthesis of Vanillin from Isoeugenol by Recombinant Isoeugenol Monooxygenase from Pseudomonas nitroreducens Jin1. Appl Biochem Biotechnol. 2021:1116-1128. doi:10.1007/s12010-020-03478-5). Učinkovita biosinteza vanilina iz izoevgenola z uporabo rekombinantne izoevgenol monooksigenaze Jin1 iz bakterije Pseudomonas nitroreducens. Luka Gnidovec (15.4.)
  3. One-pot production of butyl butyrate from glucose using a cognate “diamond-shaped” E. coli consortium (J. P. Sinumvayo "et. al"; Bioresources and Bioprocessing 8, 2021; https://bioresourcesbioprocessing.springeropen.com/articles/10.1186/s40643-021-00372-8#Sec9). Proizvodnja butil butirata iz glukoze z uporabo "diamantnega" konzorcija E. coli Liza Ulčakar (15.4.)

Biotehnološki polimeri

  1. Biotechnologically produced fucosylated oligosaccharides inhibit the binding of human noroviruses to their natural receptors (S. M. Derya et al., “Biotechnologically produced fucosylated oligosaccharides inhibit the binding of human noroviruses to their natural receptors,” J. Biotechnol., vol. 318, no. April, pp. 31–38, 2020, doi: 10.1016/j.jbiotec.2020.05.001). Inhibicija vezave humanega norovirusa na naravni receptor z biotehnološko proizvedenimi fukoziliranimi oligosaharidi Anže Karlek (21.4.)
  2. Complete biosynthesis of a sulfated chondroitin in Escherichia coli (Badri, A., et al; Nature communications 12 (2021); https://doi.org/10.1038/s41467-021-21692-5). Popolna biosinteza hondroitin sulfata v E. coli Ana Maklin (22.4.)
  3. Optimization of cultivation medium and cyclic fed-batch fermentation strategy for enhanced polyhydroxyalkanoate production by Bacillus thuringiensis using a glucose-rich hydrolyzate (Singh et al. Bioresour. Bioprocess. (2021) 8:11, https://doi.org/10.1186/s40643-021-00361-x) Optimizacija fermentacijske proizvodnje PHA-bioplastike z b. thuringiensis in z glukozo bogatimi hidrolizati Urban Hribar (22.4.)

Biotehnološko pridobljeni encimi

  1. Engineering a carboxypeptidase from Aspergillus niger M00988 by mutation to increase its ability in high Fischer ratio oligopeptide preparation (Xiong K., Liu J., Wang X., Sun B., Zhang Y., Zhao Z., Pei P., & Li X.; Journal of Biotechnology, 330, 1–8, 2021, https://doi.org/10.1016/j.jbiotec.2021.02.015). Priprava karboksipeptidaze iz glive Aspergillus niger M00988 za izboljšanje priprave oligopeptidov z visokim Fischerjevim razmerjem Urška Fajdiga (5.5.)
  2. Cell-Based High-Throughput Screening Protocol for Discovering Antiviral Inhibitors Against SARS-COV-2 Main Protease (3CLpro) (Rothan, H.A., Teoh, T.C; Mol Biotechnol 63, 240–248 (2021); https://doi.org/10.1007/s12033-021-00299-7) Visoko zmogljiv presejalni protokol na osnovi celic za raziskovanje antivirusnih inhibitorjev proti Sars-Cov-2 glavni proteazi (3CLpro) Mirsad Mešić (6.5.)
  3. A novel cold-active type I pullulanase from a hot-spring metagenome for effective debranching and production of resistant starch (M. Thakur et al.; Bioresource Technology 320, 2021; https://doi.org/10.1016/j.biortech.2020.124288). Pri nizkih temperaturah aktivna pululanaza tipa I iz metagenoma vročih vrelcev omogoča učinkovito klestenje in proizvodnjo odpornega škroba Martina Lokar (6.5.)

Metabolno inženirstvo v biotehnologiji

  1. Production of Tyrian purple indigoid dye from tryptophan in Escherichia coli (J. Lee et al.; Nat. Chem. Biol. 17, 2021; https://doi.org/10.1038/s41589-020-00684-4). Proizvodnja škrlatnega indigoidnega barvila iz triptofana v bakteriji Escherichia coli Jerneja Nimac (12.5.)
  2. Development of Pseudomonas asiatica as a host for the production of 3-hydroxypropionic acid from glycerol (T. Thi Nguyen et al., Bioresource Technology, vol. 329, 2021; https://doi.org/10.1016/j.biortech.2021.124867). Razvoj gostiteljskega organizma Pseudomonas asiatica za proizvodnjo 3-hidroksipropionske kisline iz glicerola Urška Pečarič Strnad (12.5.)
  3. Generation of an engineered food-grade Lactococcus lactis strain for production of an antimicrobial peptide: in vitro and in silico evaluation (A. Tanhaeian et. al; BMC Biotechnol. 20(1), 2020; https://doi.org/10.1186/s12896-020-00612-3). Priprava in ovrednotenje novega seva bakterij Lactococcus lactis za proizvodnjo protimikrobnega peptida. Klementina Polanec (13.5.)
  4. Metabolic engineering of E. coli for producing phloroglucinol from acetate (S. Yu et. al; Applied Microbiology and Biotechnology. 2020; https://doi.org/10.1007/s00253-020-10591-2). Metabolno inženirstvo bakterije Escherichia coli za pridobivanje floroglucinola iz acetata. Ernestina Lavrih (13.5.)

Biomasa in biogoriva

  1. Green Deep Eutectic Solvents for Microwave-Assisted Biomass Delignification and Valorisation (Grillo G. et al.; Molecules 2021; https://www.mdpi.com/1420-3049/26/4/798/htm) Zelena globoka evtektična topila za delignifikacijo in valorizacijo biomase s pomočjo mikrovalov. Željka Erić (19.5.)
  2. Incorporating a molecular antenna in diatom microalgae cells enhances photosynthesis (Leone, G., De la Cruz Valbuena, G., Cicco, S.R. et al.; Sci Rep 11, 2021; https://www.nature.com/articles/s41598-021-84690-z#Sec10) Vključevanje molekularne antene v celice mikroskopsko majhnih kremenastih alg (diatomej) za izboljšanje fotosintetske učinkovitosti. Karin Dobravc Škof (20.5.)
  3. Integrated cascade biorefinery processes for the production of single cell oil by Lipomyces starkeyi from Arundo donax L. hydrolysates (Di Fidio N et al.; Bioresour. Tecnhol., vol.325, p.124635, Apr. 2021.; https://doi.org/10.1016/j.biortech.2020.124635). Integrirana procesa biorafinerijske proizvodnje znotrajceličnih založnih lipidov iz Arundo donax L. v Lipomyces starkeyi . Katja Doberšek (20.5.)

Okoljski vidiki biotehnologije in bioremediacija

  1. HriGFP Novel Flourescent Protein: Expression and Applications (Saeed, S. et al.; Molecular Biotechnology. 2020; https://link.springer.com/article/10.1007/s12033-020-00243-1) HriGFP fluorescentni protein: Izraz in aplikacije. Almina Tahirović (26.5.)
  2. An extracellular lipase from Amycolatopsis mediterannei is a cutinase with plastic degrading activity (T. Yeqi; Computational and Structural Biotechnology Journal 19; 2021, https://doi.org/10.1016/j.csbj.2021.01.019 ) Izvencelična lipaza iz Amycolatopsis Mediterannei je kutinaza z možnostjo razgradnje plastike. Eva Keber (27.05.)
  3. Identifying environmental hotspots and improvement strategies of vanillin production with life cycle assessment (Y. Zhao et. al; Science of the total environment, 769, 2021; https://doi.org/10.1016/j.scitotenv.2020.144771 ) Identifikacija okoljskih žarišč in strategij za izboljšanje proizvodnje vanilina z oceno življenjskega cikla. Nina Lukančič (27.5)